تعداد نشریات | 38 |
تعداد شمارهها | 1,258 |
تعداد مقالات | 9,115 |
تعداد مشاهده مقاله | 8,325,166 |
تعداد دریافت فایل اصل مقاله | 5,040,079 |
مدلسازی دینامیک غیرخطی و فرمیابی سازه تنسگریتی سهمیلهای نوع اول در ساختارهای تصادفی: رویکرد الگوریتم ژنتیک | ||
مکانیک هوافضا | ||
مقاله 7، دوره 20، شماره 3 - شماره پیاپی 77، آذر 1403، صفحه 87-107 اصل مقاله (2.38 M) | ||
نوع مقاله: گرایش دینامیک، ارتعاشات و کنترل | ||
نویسندگان | ||
مرتضی جهان1؛ میلاد عظیمی* 2 | ||
1دانشجوی دکتری، پژوهشکده سامانههای فضانوردی، پژوهشگاه هوافضا (وزارت علوم، تحقیقات و فناوری)، تهران، ایران | ||
2استادیار، پژوهشکده سامانههای فضانوردی، پژوهشگاه هوافضا (وزارت علوم، تحقیقات و فناوری)، تهران، ایران | ||
تاریخ دریافت: 24 خرداد 1403، تاریخ بازنگری: 03 شهریور 1403، تاریخ پذیرش: 11 شهریور 1403 | ||
چکیده | ||
در این مقاله به استخراج معادلات دینامیک غیرخطی و فرمیابی مبتنی بر الگوریتم ژنتیک یک سازه تنسگریتی کلاس یک در ساختارهای تصادفی با مقطع مثلثی و محاط در کره پرداختهشده است. معادلات دینامیک غیرخطی سیستم با استفاده از روش لاگرانژ و روش المان محدود و با در نظر گرفتن مختصات گرهها بهعنوان مختصات تعمیمیافته استخراجشده است. رویکرد پیشنهادی قابلیت مدلسازی دینامیکی جامع و گستردهای را برای انواع سازههای تنسگریتی دارا میباشد. فرآیند فرمیابی پیشنهادی با استفاده از روش الگوریتم ژنتیک، با ساختاری ساده قابلیت تعیین اشکال منظم یا نامنظم تنسگریتی بدون محدودیتهای ابعادی را دارا میباشد. سازههای تنسگریتی پایدار از میان پیکربندیهای تصادفی و بر اساس قیود تعریفشده، تولید و با استفاده از تابع تناسب الگوریتم ژنتیک و اهداف چند موضوعی فرمیابی میشوند. عملکرد الگوریتم فرمیابی پیشنهادی برای سازههای با ساختارهای نامشخص، در سه حالت مختلف با ماتریس اتصال و نوع عضوهای (میله/ ریسمان) مشخص و تصادفی بررسی و با روش چگالی نیرو صحهگذاری شده است. رفتار ارتعاشی مدلهای نهایی استخراجشده از فرایند فرمیابی، با تحلیل مودال و تحت بارگذاری هارمونیک موردبررسی قرارگرفته است. نتایج حاصل از شبیهسازیها، قابلیت روش پیشنهادی با ملاحظات مشخصههای ارتعاشی سازههای تنسگریتی را نمایش میدهد. | ||
تازه های تحقیق | ||
| ||
کلیدواژهها | ||
سازه تنسگریتی؛ فرمیابی هوشمند؛ الگوریتم ژنتیک؛ چگالی نیرو؛ تحلیل ارتعاشات | ||
عنوان مقاله [English] | ||
Nonlinear Dynamic Modeling and Form-finding of Class1 Three-Bar Tensegrity in Random Structures: Genetic Algorithm Approach | ||
نویسندگان [English] | ||
Morteza Jahan1؛ Milad Azimi2 | ||
1Ph.D. Student, Department of Astronautic, Aerospace Research Institute (Ministry of Science, Research and Technology), Tehran, Iran | ||
2Corresponding author: Assistant Professor, Department of Astronautic, Aerospace Research Institute (Ministry of Science, Research and Technology), Tehran, Iran | ||
چکیده [English] | ||
This article focuses on the derivation of nonlinear dynamic equations and form-finding using genetic algorithms for class 1 tensegrity structure. The structures under consideration feature a triangular cross-section, with a sphere enclosing them. The nonlinear dynamic equations of the system are obtained by applying the Lagrangian approach and the finite element method, considering the nodal positions as the generalized coordinates. The proposed approach illustrates how to develop large-scale, detailed dynamic models with different tensegrity structures. The form-finding approach employs a simple framework capable of identifying both regular and irregular tensegrity configurations without limitation on dimensions. Stable tensegrity structures are created by applying specific restrictions to random configurations. The genetic algorithm and multi-objective functions are used to determine the fitness function and create these structures. Three separate scenarios with both defined and random connection matrices and member types—bars and cables—evaluate the performance of the proposed method for arbitrary architectures. The resulting models are validated with regard to force density. The vibration behavior of the final models under harmonic loads is investigated via modal analysis. The simulation results demonstrate the efficacy of the proposed method in precisely determining the vibration characteristics of tensegrity structures through the application of an intelligent form-finding methodology. This method is capable of managing both regular and irregular tensegrity structures in stochastic conditions. This approach is capable of handling both regular and irregular tensegrity structures in stochastic conditions. | ||
کلیدواژهها [English] | ||
Tensegrity structure, Intelligent form finding, Genetic algorithm, Force Density, Vibrations Analysis | ||
مراجع | ||
[1] Wen L, PFan F, Ding X. Tensegrity metamaterials for soft robotics. Science Robotics. 2020;5(45):eabd9158. DOI: https://doi.org/10.1126/scirobotics.abd9158. [2] Kahla NB, Ouni MHE, Ali NBH, Khan RA. Nonlinear dynamic response and stability analysis of a tensegrity bridge to selected cable rupture. Latin American Journal of Solids and Structures. 2020;17:e253. DOI: https://doi.org/10.1590/1679-78255907. [3] Motro R. Tensegrity: structural systems for the future: Elsevier; 2003. [4] Tibert A, Pellegrino S. Review of form-finding methods for tensegrity structures. International Journal of Space Structures. 2011;26(3):241-55. DOI: https://doi.org/10.1260/0266-3511.26.3.241. [5] Zhang L-Y, Zhu S-X, Li S-X, Xu G-K. Analytical form-finding of tensegrities using determinant of force-density matrix. Composite Structures. 2018;189:87-98. DOI: https://doi.org/10.1016/j.compstruct.2018.01.054. [6] Kan Z, Peng H, Chen B, Zhong W. Nonlinear dynamic and deployment analysis of clustered tensegrity structures using a positional formulation FEM. Composite Structures. 2018;187:241-58. DOI: https://doi.org/10.1016/j.compstruct.2017.12.050. [7] Murakami H. Static and dynamic analyses of tensegrity structures. Part II. Quasi-static analysis. International Journal of Solids and Structures. 2001;38(20):3615-29. DOI: https://doi.org/10.1016/S0020-7683(00)00233-X. [8] Faroughi S, Khodaparast HH, Friswell MI. Non-linear dynamic analysis of tensegrity structures using a co-rotational method. International Journal of Non-Linear Mechanics. 2015;69:55-65. DOI: https://doi.org/10.1016/j.ijnonlinmec.2014.11.021. [9] Rimoli JJ. A reduced-order model for the dynamic and post-buckling behavior of tensegrity structures. Mechanics of Materials. 2018;116:146-57. DOI: https://doi.org/10.1016/j.mechmat.2017.01.009. [10] Wang Y, Xu X, Luo Y. Form-finding of tensegrity structures via rank minimization of force density matrix. Engineering Structures. 2021;227:111419. DOI: https://doi.org/10.1016/j.engstruct.2020.111419. [11] Pagitz M, Tur JM. Finite element based form-finding algorithm for tensegrity structures. International Journal of Solids and Structures. 2009;46(17):3235-40. DOI: https://doi.org/10.1016/j.ijsolstr.2009.04.018. [12] Gasparini D, Klinka KK, Arcaro VF. A finite element for form-finding and static analysis of tensegrity structures. Journal of Mechanics of Materials and Structures. 2012;6(9):1239-54. DOI: https://dx.doi.org/10.2140/jomms.2011.6.1239. [13] Lu C, Zhu H, Li S. Initial form-finding design of deployable tensegrity structures with dynamic relaxation method. Journal of Intelligent & Fuzzy Systems. 2017;33(5):2861-8. DOI: https://doi.org/0.3233/JIFS-169335. [14] Barnes MR. Form finding and analysis of tension structures by dynamic relaxation. International Journal of Space Structures. 1999;14(2):89-104. DOI: https://doi.org/10.1260/0266351991494722. [15] Ma S, Yuan X-F, Xie S-D. A new genetic algorithm-based topology optimization method of tensegrity tori. KSCE Journal of Civil Engineering. 2019;23:2136-47. DOI: https://doi.org/10.1007/s12205-019-1700-z. [16] Li Y, Feng X-Q, Cao Y-P, Gao H. A Monte Carlo form-finding method for large scale regular and irregular tensegrity structures. International Journal of Solids and Structures. 2010;47(14-15):1888-98. DOI: https://doi.org/10.1016/j.ijsolstr.2010.03.026. [17] Brökemeier F, Hengstenberg SM, Keeble JW, Robin CE, Rocco F, Savage MJ. Quantum Magic and Multi-Partite Entanglement in the Structure of Nuclei. arXiv preprint arXiv:2409.12064. 2024. DOI: https://doi.org/10.48550/arXiv.2409.12064. [18] Scolamiero LG, Zolesi V, Ganga PL, Podio-Guidugli P, Tibert G, Micheletti A, inventors; Agence Spatiale Europeenne, assignee. Deployable tensegrity structure, especially for space applications. United States patent US 9,815,574. 2017. [19] Motro R. Tensegrity systems: the state of the art. International journal of space structures. 1992;7(2):75-83. DOI: https://doi.org/10.1177/026635119200700201. [20] Małek M, Łasica W, Kadela M, Kluczyński J, Dudek D. Physical and mechanical properties of polypropylene fibre-reinforced cement–glass composite. Materials. 2021;14(3):637. DOI: https://doi.org/10.3390/ma14030637. [21] Zhang J, Ohsaki M. Form-finding of complex tensegrity structures by dynamic relaxation method. Journal of Structural and Construction Engineering. 2016;81(719):71-7. [22] Domer B. Performance enhancement of active structures during service lives. EPFL; 2003. DOI: https://doi.org/10.5075/epfl-thesis-2750. [23] Lee S, Lee J, Kang J. A genetic algorithm based form-finding of tensegrity structures with multiple self-stress states. Journal of Asian Architecture and Building Engineering. 2017;16(1):155-62. DOI: https://doi.org/10.1016/j.proeng.2011.07.371. [24] Yamamoto M, Gan B, Fujita K, Kurokawa J. A genetic algorithm based form-finding for tensegrity structure. Procedia Engineering. 2011;14:2949-56. [25] Perera NS. A machine learning application for form-finding of tensegrity structures: Queen's University (Canada); 2018. [26] Zalyaev E, Savin S, Vorochaeva L, editors. Machine learning approach for tensegrity form finding: Feature extraction problem. 2020 4th Scientific School on Dynamics of Complex Networks and their Application in Intellectual Robotics (DCNAIR); 2020: IEEE. DOI: https://doi.org/10.1109/DCNAIR50402.2020.9216799. [27] Lee S, Lieu QX, Vo TP, Lee J. Deep neural networks for form-finding of tensegrity structures. Mathematics. 2022;10(11):1822. DOI: https://doi.org/10.3390/math10111822. [28] Zhao L, Sun Z, Liu K, Zhang J. The dynamic relaxation form finding method aided with advanced recurrent neural network. CAAI Transactions on Intelligence Technology. 2023;8(3):635-44. DOI: https://doi.org/10.1049/cit2.12177. [29] Paul C, Lipson H, Cuevas FJV, editors. Evolutionary form-finding of tensegrity structures. Proceedings of the 7th annual conference on Genetic and evolutionary computation; 2005. DOI: https://doi.org/10.1145/1068009.1068011. [30] Rieffel J, Valero-Cuevas F, Lipson H. Automated discovery and optimization of large irregular tensegrity structures. Computers & Structures. 2009;87(5-6):368-79. DOI: https://doi.org/10.1016/j.compstruc.2008.11.010. [31] Xu X, Luo Y. Form-finding of nonregular tensegrities using a genetic algorithm. Mechanics Research Communications. 2010;37(1):85-91. DOI: https://doi.org/10.1016/j.mechrescom.2009.09.003. [32] Holland JH. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence: MIT press; 1992. [33] Lobo D, Vico FJ. Evolutionary development of tensegrity structures. Biosystems. 2010;101(3):167-76. DOI: https://doi.org/10.1016/j.biosystems.2010.06.005. [34] Koohestani K, Guest S. A new approach to the analytical and numerical form-finding of tensegrity structures. International Journal of Solids and Structures. 2013;50(19):2995-3007. DOI: https://doi.org/10.1016/j.ijsolstr.2013.05.014. [35] Yu X, Yang Y, Ji Y. Automatic Form-finding of N-4 Type Tensegrity Structures. Latin American Journal of Solids and Structures. 2022;19:e419. DOI: https://doi.org/10.1590/1679-78256735. [36] Harichandran A, Sreevalli IY. Form-finding of tensegrity structures based on force density method. Indian Journal of Science and Technology. 2016. DOI: https://doi.org/10.17485/ijst/2016/v9i24/93145, June 2016. [37] Azimi M, Dezh ME, Alikhani A. Integral sliding mode fault-tolerant control and active vibration suppression of a flexible spacecraft in the presence of external disturbances. Journal of Aerospace Mechanics. 2023; 19(1):137-151. DOR: https://dor.isc.ac/dor/20.1001.1.26455323.1402.19.1.10.5. [38] Azimi M. Robust stabilization and active vibration control of a rigid-flexible multibody system using time-varying sliding mode algorithm. Journal of Aerospace Mechanics. 2022; 18(4):49-63. DOR: https://dor.isc.ac/dor/20.1001.1.26455323.1401.18.4.4.8. | ||
آمار تعداد مشاهده مقاله: 514 تعداد دریافت فایل اصل مقاله: 73 |