تعداد نشریات | 38 |
تعداد شمارهها | 1,258 |
تعداد مقالات | 9,115 |
تعداد مشاهده مقاله | 8,325,181 |
تعداد دریافت فایل اصل مقاله | 5,040,142 |
بررسی عددی سه بعدی تاثیر پارامترهای فیزیکی بر رفتار مولد گردابه انعطافپذیر و انتقال حرارت درون یک میکروکانال | ||
مکانیک هوافضا | ||
مقاله 7، دوره 20، شماره 4 - شماره پیاپی 78، اسفند 1403، صفحه 71-86 | ||
نوع مقاله: گرایش پیشرانش و انتقال حرارت | ||
نویسندگان | ||
مهدی شیخیزاد سراوانی1؛ حامد محدث دیلمی* 2؛ محمد نقاش زادگان3 | ||
1دانشجوی دکتری، دانشکده مهندسی مکانیک، دانشگاه گیلان، رشت، ایران | ||
2نویسنده مسئول: دانشیار، دانشکده مهندسی مکانیک، دانشگاه گیلان، رشت، ایران | ||
3دانشیار، دانشکده مهندسی مکانیک، دانشگاه گیلان، رشت، ایران | ||
تاریخ دریافت: 05 شهریور 1403، تاریخ بازنگری: 31 شهریور 1403، تاریخ پذیرش: 19 مهر 1403 | ||
چکیده | ||
در این مقاله تأثیر پارامترهای هندسی بر رفتار مولد گردابه انعطافپذیر و انتقال حرارت در یک میکروکانال سهبعدی مورد بررسی قرار گرفته است. هدف اصلی این مطالعه، تحلیل اثرات پارامترهای هندسی مولد گردابه بر انتقال حرارت و افت فشار در میکروکانال است. شبیهسازیهای عددی با استفاده از نرمافزار کامسول انجام شده است تا تأثیر تغییرات پهنا و عرض مقطع مولد گردابه و همچنین سرعت جریان ورودی بررسی گردد. در این پژوهش، پهنا و عرض مقطع مولد گردابه در محدوده 15/0 تا 3/0 میلیمتر بررسی شده است. نتایج نشان داد که با افزایش عرض مولد در سرعت ثابت، عدد ناسلت حداکثر تا 3 درصد افزایش یافته است. علاوه بر این، افزایش پهنای مولد از 15/0 میلیمتر به 3/0 میلیمتر منجر به افزایش جابجایی نوک مولد شد که این امر نشاندهنده کاهش مقاومت جریان و افزایش کارایی در جلوگیری از تشکیل لایه مرزی میباشد. در این مطالعه، سه محدوده سرعت جریان (71/1، 28/2، و 42/3 متر بر ثانیه ) نیز مورد بررسی قرار گرفت. نتایج نشان داد که با افزایش سرعت جریان، عدد ناسلت افزایش و ضریب اصطکاک کاهش یافته که منجر به کاهش افت فشار سیستم میشود. | ||
تازه های تحقیق | ||
| ||
کلیدواژهها | ||
مولد گردابه انعطافپذیر؛ مطالعه عددی؛ میکروکانال؛ تعامل سازه و سیال | ||
عنوان مقاله [English] | ||
A 3D Numerical Study of the Impact of Physical Parameters on the Behavior of a Flexible Vortex Generator and Heat Transfer within a Microchannel | ||
نویسندگان [English] | ||
Mahdi Sheikhizad Saravani1؛ Hamed Mohaddes Deylami2؛ Mohammad Naghashzadegan3 | ||
1Ph.D. Student, Faculty of Mechanical Engineering, University of Guilan, Rasht, Iran | ||
2Corresponding author: Associate Professor, Faculty of Mechanical Engineering, University of Guilan, Rasht, Iran | ||
3Associate Professor, Faculty of Mechanical Engineering, University of Guilan, Rasht, Iran | ||
چکیده [English] | ||
In this paper, the impact of geometric parameters on the behavior of a flexible vortex generator and heat transfer in a three-dimensional microchannel is investigated. The primary objective of this study is to analyze the effects of the geometric parameters of the vortex generator on heat transfer and pressure drop within the microchannel. Numerical simulations were conducted using COMSOL software to examine the influence of variations in the width and height of the vortex generator cross-section, as well as the inlet flow velocity. In this research, the width and height of the vortex generator cross-section were analyzed within the range of 0.15 to 0.3 mm. The results indicated that increasing the width of the generator at a constant velocity resulted in up to a 3% increase in the Nusselt number. Additionally, increasing the width of the generator from 0.15 mm to 0.3 mm led to an increase in the generator tip displacement, indicating reduced flow resistance and enhanced efficiency in preventing boundary layer formation. The study also examined three ranges of flow velocity (1.71, 2.28, and 3.42 m/s). The results showed that as the flow velocity increased, the Nusselt number increased, while the friction coefficient decreased, and leading to a reduction in the system's pressure drop. | ||
کلیدواژهها [English] | ||
Flexible vortex generator, Numerical study, Microchannel, Fluid-structure interaction | ||
مراجع | ||
[1] Vujanović M, Besagni G, Duić N, Markides CN. Innovation and advancement of thermal processes for the production, storage, utilization and conservation of energy in sustainable engineering applications. Applied thermal engineering. 2023;221:119814. DOI: https://doi.org/10.1016/j.applthermaleng.2022.119814. [2] Asif M, Muneer T. Energy supply, its demand and security issues for developed and emerging economies. Renewable and sustainable energy reviews. 2007;11(7):1388-413. DOI: https://doi.org/10.1016/j.rser.2005.12.004. [3] Li J, Chen J, Chen Y, Luo X, Liang Y, He J, Yang Z. Multi-objective optimizations of vapor-liquid adjustment evaporator and its machine-learning based operational control strategy. International Journal of Heat and Mass Transfer. 2024;219:124894. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2023.124894. [4] Tafavogh M, Zahedi A. Improving the performance of home heating system with the help of optimally produced heat storage nanocapsules. Renewable Energy. 2022; 181:1276-93. DOI: https://doi.org/10.1016/j.renene.2021.07.015. [5] Zhang D, Fu L, Guan J, Shen C, Tang S. Investigation on the heat transfer and energy-saving performance of microchannel with cavities and extended surface. International Journal of Heat and Mass Transfer. 2022; 189:122712. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2022.122712. [6] Zhang D, Fu L, Tang S, Lan M, Shen C, Chen S, Cao H, Wu J. Investigation on the heat transfer performance of microchannel with combined ultrasonic and passive structure. Applied Thermal Engineering. 2023;233:121076. DOI: https://doi.org/10.1016/j.applthermaleng.2023.121076. [7] Memon SA, Akhtar S, Cheema TA, Park CW. Enhancing heat transfer in microchannels: A systematic evaluation of crescent-like fin and wall geometries with secondary flow. Applied Thermal Engineering. 2024;239:122099. DOI: https://doi.org/10.1016/j.applthermaleng.2023.122099. [8] Wu X, Fu T, Wang J, Zeng L, Zhang F. A comparative study of fluid flow and heat transfer in the tube with multi-V-winglets vortex generators. Applied Thermal Engineering. 2024;236:121448. DOI: https://doi.org/10.1016/j.applthermaleng.2023.121448. [9] Wang J, Wang C. Heat transfer and flow characteristics of a rectangular channel with a small circular cylinder having slit-vent vortex generator. International Journal of Thermal Sciences. 2016;104:158-71. DOI: https://doi.org/10.1016/j.ijthermalsci.2016.01.006. [10] Singh NK. Control of laminar separation bubble using vortex generators. Journal of Applied Fluid Mechanics. 2019;12(3):891-905. DOI: 10.29252/jafm.12.03.29352. [11] Xie J, Xie Y, Yuan C. Numerical study of heat transfer enhancement using vortex generator for thermal management of lithium ion battery. International Journal of Heat and Mass Transfer. 2019;129:1184-93. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.018. [12] Al-Asadi MT, Alkasmoul FS, Wilson MC. Heat transfer enhancement in a micro-channel cooling system using cylindrical vortex generators. International Communications in Heat and Mass Transfer. 2016;74:40-7. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2016.03.002. [13] Dudek JC. Modeling vortex generators in a Navier-Stokes code. AIAA journal. 2011;49(4):748-59. DOI: https://doi.org/10.2514/1.J050683. [14] Esmaeilzadeh A, Amanifard N, Deylami HM. Comparison of simple and curved trapezoidal longitudinal vortex generators for optimum flow characteristics and heat transfer augmentation in a heat exchanger. Applied Thermal Engineering. 2017;125:1414-25. DOI: https://doi.org/10.1016/j.applthermaleng.2017.07.115. [15] Pourgholam M, Izadpanah E, Motamedi R, Habibi SE. Convective heat transfer enhancement in a parallel plate channel by means of rotating or oscillating blade in the angular direction. Applied Thermal Engineering. 2015;78:248-57. DOI: https://doi.org/10.1016/j.applthermaleng.2014.12.057. [16] Tian FB, Dai H, Luo H, Doyle JF, Rousseau B. Fluid–structure interaction involving large deformations: 3D simulations and applications to biological systems. Journal of computational physics. 2014;258:451-69. DOI: https://doi.org/10.1016/j.jcp.2013.10.047. [17] Kang MS, Park SG, Dinh CT. Heat transfer enhancement by a pair of asymmetric flexible vortex generators and thermal performance prediction using machine learning algorithms. International Journal of Heat and Mass Transfer. 2023;200:123518. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2022.123518. [18] Gandjalikhan Nassab SA, Moein Addini M. Convection Enhancement Using Composite Vortex Generator. AUT Journal of Mechanical Engineering. 2022;6(1):149-64. DOI: https://doi.org/10.22060/ajme.2021.20158.5992. [19] Liao W, Jing D. Experimental study on fluid mixing and pressure drop of mini-mixer with flexible vortex generator. International Communications in Heat and Mass Transfer. 2023;142:106615. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2023.106615. [20] Amini Y, Habibi SE. Effects of multiple flexible vortex generators on the hydrothermal characteristics of a rectangular channel. International Journal of Thermal Sciences. 2022;175:107454. DOI: https://doi.org/10.1016/j.ijthermalsci.2021.107454. [21] Caliskan S, Koseoglu AD, Dogan A, Sahin UR. Experimental investigation of the effect of flexible/rigid flag on heat transfer. International Journal of Thermal Sciences. 2023;188:108147. DOI: https://doi.org/10.1016/j.ijthermalsci.2023.108147. [22] Hosseini S, Aghebatandish S, Dadvand A, Khoo BC. An immersed boundary-lattice Boltzmann method with multi relaxation time for solving flow-induced vibrations of an elastic vortex generator and its effect on heat transfer and mixing. Chemical Engineering Journal. 2021;405:126652. DOI: https://doi.org/10.1016/j.cej.2020.126652. [23] Saini P, Dhar A, Powar S. Performance enhancement of fin and tube heat exchanger employing curved trapezoidal winglet vortex generator with circular punched holes. International Journal of Heat and Mass Transfer. 2023;209:124142. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2023.124142. [24] Gallegos RK, Sharma RN. Flags as vortex generators for heat transfer enhancement: Gaps and challenges. Renewable and Sustainable Energy Reviews. 2017;76:950-62. DOI: https://doi.org/10.1016/j.rser.2017.03.115. [25] Tian FB, Dai H, Luo H, Doyle JF, Rousseau B. Fluid–structure interaction involving large deformations: 3D simulations and applications to biological systems. Journal of computational physics. 2014;258:451-69. DOI: https://doi.org/10.1016/j.jcp.2013.10.047. [26] Malvern LE. Introduction to the Mechanics of a Continuous Medium. 1969. DOI: http://worldcat.org/isbn/0134876032. [27] Ali S, Habchi C, Menanteau S, Lemenand T, Harion JL. Heat transfer and mixing enhancement by free elastic flaps oscillation. International Journal of Heat and Mass Transfer. 2015 ;85:250-64. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.122. [28] Tian FB, Dai H, Luo H, Doyle JF, Rousseau B. Fluid–structure interaction involving large deformations: 3D simulations and applications to biological systems. Journal of computational physics. 2014 ;258:451-69. DOI: https://doi.org/10.1016/j.jcp.2013.10.047. [29] Turek S, Hron J. Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow. Springer Berlin Heidelberg; 2006. DOI: https://doi.org/10.1007/3-540-34596-5_15. [30] Bejan A. Convection heat transfer. John Wiley & sons; 2013. [31] Asaadi S, Abdi H. Numerical investigation of laminar flow and heat transfer in a channel using combined nanofluids and novel longitudinal vortex generators. Journal of Thermal Analysis and Calorimetry. 2021;145:2795-808. DOI: https://doi.org/10.1007/s10973-020-09795-5. | ||
آمار تعداد مشاهده مقاله: 4,156 تعداد دریافت فایل اصل مقاله: 5 |