تعداد نشریات | 38 |
تعداد شمارهها | 1,258 |
تعداد مقالات | 9,115 |
تعداد مشاهده مقاله | 8,325,686 |
تعداد دریافت فایل اصل مقاله | 5,040,743 |
کاربست هوش مصنوعی و مدیریت دانش در بهبود حکمرانی شرکتی مطالعه موردی شرکت مپنا | ||
مدیریت راهبردی دانش سازمانی | ||
مقاله 6، دوره 7، شماره 4 - شماره پیاپی 27، دی 1403، صفحه 154-175 | ||
نوع مقاله: مقاله پژوهشی با اصالت | ||
شناسه دیجیتال (DOI): 10.47176/smok.2024.1813 | ||
نویسندگان | ||
سمیه طحان پور1؛ وحید آرایی* 2؛ مازیار عظیمزاده ایرانی3؛ علی اصغر پورعزت4 | ||
1دانشجوی دکترای مدیریت دولتی، گروه مدیریت دولتی و خط مشی گذاری عمومی، واحد تهران مرکزی، دانشگاه آزاد اسلامی ، تهران، ایران | ||
2استادیار، گروه مدیریت دولتی و خط مشی گذاری عمومی، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران | ||
3استادیار، روزه مدیریت دولتی و خط مشی گذاری عمومی، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران | ||
4استاد، گروه مدیریت دولتی، دانشگاه تهران، تهران ایران | ||
تاریخ دریافت: 21 مهر 1403، تاریخ بازنگری: 27 آبان 1403، تاریخ پذیرش: 01 دی 1403 | ||
چکیده | ||
زمینه/هدف: یکی از موضوعات مهم در سالهای اخیر مفهوم حکمرانی شرکتی است. این مفهوم به شیوه مدیریت و کنترل یک سازمان پرداختهاست و هدف اصلی آن تضمین شفافیت، مسئولیتپذیری و انصاف در تصمیمگیریهای شرکتی است. ازسویدیگر، مدیریت دانش به سازمانها کمک میکند تا از تجربیات و اطلاعات موجود بهرهبرداری کرده و به بهبود تصمیمگیری و نوآوری پرداخته شود. با ظهور هوش مصنوعی بهعنوان یکی از فناوریهای پیشرو، سازمانها به سمت افزایش بهرهوری هدایت میشوند. کاربست هوش مصنوعی و مدیریت دانش در حکمرانی شرکتی میتواند به بهینهسازی تصمیمگیری و افزایش کارایی سازمانها منجر شود. سازمانهای کشور همواره به یک نظام دانشی نیاز دارند که بتواند بهصورت هماهنگ، منظم، هدفمند، مستمر و پویا عمل کند. یکی از این سازمانها، شرکت مپنا است. روش پژوهش: رویکرد پژوهش حاضر کیفی است و با استفاده از روش تحلیل مضمون انجام شدهاست. روشهای گردآوری دادهها در این تحقیق شامل مطالعات کتابخانهای و مطالعات میدانی است. در مرحله بعد مدل مفهومی از روش تحلیل مضمون ارائه شده است. مدت زمان انجام مطالعات میدانی و طراحی، توزیع، جمعآوری و تحلیل دادههای کیفی در بازه زمانی اسفند ۱۴۰۱ تا اسفند ۱۴۰۲ صورت گرفتهاست. یافتههای پژوهش: براساس روش تحلیل مضمون، ابعاد و مؤلفههای مؤثر در مدیریت دانش در شرکت مپنا شامل بعد فردی، بعد سازمانی و بعد محیطی هستند. ابعاد و مؤلفههای مؤثر در هوش مصنوعی در شرکت مپنا شامل بعد زمینهای، استراتژیهای سازمان، بعد سازمانی، بعد بازاریابی، بعد ساختاری و بعد محیطی میباشد. نتیجهگیری: نتایج نشان میدهد که مدیریت دانش تأثیر قابلتوجهی بر حکمرانی شرکتی در شرکت مپنا دارد. همچنین، هوش مصنوعی با ابعاد زمینهای، استراتژیهای سازمان، ابعاد سازمانی، بازاریابی، ساختاری و محیطی نیز بر حکمرانی شرکتی در این شرکت تأثیرگذار است. حکمرانی شرکتی میتواند مزایای قابلتوجهی برای یک ساختار تجاری یا گروهی به ارمغان آورد. این نوع حکمرانی فرهنگ سازمانی را قویتری و شفافیت را در تمامی سطوح سازمان فراهم میآورد و تضمین میکند که همه بازیگران نقش شخصی خود را در عملیات درک میکنند. با این رویکرد حکمرانی شرکتی تضمین میکند که تمامی اطلاعات واحد تجاری بهروز و دقیق هستند و به هیئتمدیره این امکان را میدهد تا تصمیمات استراتژیک روشن و دقیقی را بر اساس دادههای معتبر اتخاذ کند. | ||
کلیدواژهها | ||
حکمرانی شرکتی؛ شرکت مپنا؛ مدیریت دانش؛ هوش مصنوعی | ||
عنوان مقاله [English] | ||
The use of artificial intelligence and knowledge management in improving corporate governance a case study of mapna company | ||
نویسندگان [English] | ||
Somayyeh Tahanpour1؛ Vahid Araei2؛ Mazyar Azimzadeh Irani3؛ Aliasghar Pourezat4 | ||
1PhD student in Public Administration, Department of Public Administration and Public Policy Doctoral Program, Central Tehran Branch, Islamic Azad University, Tehran, Iran | ||
2Assistant Professor, Department of Public Administration and Public Policy Doctoral Program, Central Tehran Branch, Islamic Azad University, Tehran, Iran | ||
3Assistant Professor, Department of Public Administration and Public Policy Doctoral Program, Central Tehran Branch, Islamic Azad University, Tehran, Iran | ||
4Professor, Department of Public Administration, University of Tehran, Tehran, Iran | ||
چکیده [English] | ||
Purpose: One of the most important issues in recent years is the concept of corporate governance. This concept deals with the way of managing and controlling an organization and its main goal is to ensure transparency, accountability and fairness in corporate decisions. On the other hand, knowledge management helps organizations to take advantage of existing experiences and information and improve decision-making and innovation. With the emergence of artificial intelligence as one of the leading technologies, organizations are driven to increase productivity. The application of artificial intelligence and knowledge management in corporate governance can lead to optimization of decision-making and increasing the efficiency of organizations. Organizations of the country always need a knowledge system that can work in a coordinated, regular, purposeful, continuous and dynamic manner. One of these organizations is Mapna. In this company, until now, organizational knowledge management models that are based on corporate governance have not been investigated, and knowledge management has only been dealt with separately and superficially. Therefore, this research area needs more extensive studies. In this regard, this study presents the model of artificial intelligence and knowledge management in corporate governance. Methodology: The approach of the current research is qualitative and it was done using thematic analysis method. Data collection methods in this research include library studies and field studies. In the first stage, with comprehensive library reviews and evaluation of past studies, including English and Persian books and articles, theses, effective factors and components of artificial intelligence and knowledge management in Mapna company were identified and extracted. In the second stage, in the field method, the factors and components of artificial intelligence and knowledge management were identified from the tools of interviews with professors and experts of the studied society and the method of content analysis. In the next step, a conceptual model of the theme analysis method was presented. The duration of conducting field studies and design, distribution, collection and analysis of qualitative data was done in the period of March 1401 to March 1402. Findings: Based on the theme analysis method, the effective dimensions and components in knowledge management in Mapna include individual dimension, organizational dimension and environmental dimension. The effective dimensions and components in artificial intelligence in Mapna include contextual dimension, organization strategies, organizational dimension, marketing dimension, structural dimension and environmental dimension. The results show that knowledge management, including individual, organizational and environmental dimensions, has a significant effect on corporate governance in Mapna Company. Also, artificial intelligence with contextual dimensions, organization strategies, organizational, marketing, structural and environmental dimensions also affects corporate governance in this company. Corporate governance can bring significant benefits to a business or group structure. This type of governance is able to create a stronger organizational culture and place compliance and reputation at the center of the organization's activities. Also, it provides transparency at all levels of the organization and ensures that all actors understand their personal role in the operation and when and why they are expected. With this approach, growth opportunities are clearly visible, as corporate governance ensures that all business unit information is up-to-date and accurate, allowing the board to make clear and accurate strategic decisions based on valid data. Research limitations: The most important obstacles and limitations of this research include the following: Lack of cooperation from some managers and experts of MAPNA Company due to the volume of executive activities, Due to the researcher's efforts to explain the objectives and benefits of the research to managers and experts, as well as to increase accuracy in answering the questionnaire questions, conducting the research took some time in some stages. The diversity of the field of corporate governance activities in MAPNA Company led to the expansion of categories in the field of artificial intelligence and knowledge management, which inevitably led to some of them being omitted according to the elites' opinion. The findings of this research and the presentation of the corporate governance model are within the time frame of data collection, and the passage of time may change the prioritization of the dimensions and indicators of the model. | ||
کلیدواژهها [English] | ||
artificial intelligence, corporate governance, knowledge management, Mapna Company | ||
مراجع | ||
Abbadi, S. S., Hijazi, Q. F., & Al-Rahahleh, A. S. (2016). Corporate governance quality and earnings management: Evidence from Jordan. Australasian Accounting, Business and Finance Journal, 10(2), 45-75. https://doi.org/10.1016/j.techsoc.2022.102190 Abdel, A. A. (2016). Universities’ Leadership Style in the Light of Governance Principles. International Review of Management and Business Research, 5(3), 1-15. Abzari, M. (2016). Investigating The Gap Between The Current And Desirable Status Of Knowledge Management In The Iranian Automotive Industry. Journal Of Public Administration University Of Tehran, 3(6), 19-34. (In Persian) Agrawal, A., Gans, J., & Goldfarb, A. (2018). Prediction machines: The simple economics o artificial intelligence. Harvard Business Press. Atta Elahi, Leila, Rasti, Mohammad Reza. (2012). Corporate governance system and its place in the banking system, Financial Accounting Quarterly, 11(145), 126-150. (In Persian) Beshi, T. D., & Kaur, R. (2020). Public trust in local government: Explaining the role of good governance practices. Public Organization Review, 20(2), 337-350. https://doi.org/10.1007/s11115-019-00444-6 Biswas, R., Jana, A., Arya, K., & Ramamritham, K. (2019). A good-governance framework for urban management. Journal of Urban Management, 8(2), 225-236. https://doi.org/10.1016/j.jum.2018.12.009 Braun, V., & Clark, V. (2021). Thematic Analysis: A Practical Guide SAGE Publications Ltd. Chen, M. H., Wang, H. Y., & Wang, M. C. (2018). Knowledge sharing, social capital, and financial performance: The perspectives of innovation strategy in technological clusters. Knowledge Management Research & Practice, 16(1), 89-104. https://doi.org/10.1080/14778238.2017.1415119 Clarke, V., & Braun, V. (2017). Thematic analysis. The journal of positive psychology, 12(3), 297-298. https://doi.org/10.1080/17439760.2016.1262613 Creswell, J. W. (2014). Research Design Qualitative, Quantitative and Mixed Methods Approaches (4th ed.). Derakhshan, Rostam, Najafbeigi, Reza, Daneshfard, Karamullah, Pilehvari, Nazanin. (2016). Pathology of the components of good governance (accountability, justice and fairness) in the organization of agricultural jihad in the central province. Ethical researches, 30(8), 89-104. (In Persian) Desai, M., & Goel, S. (2018). Child rights education for participation and development. London: Springer. Ebchuk, L. A., Cohen, A., & Wang, C. C. (2013). Learning and the disappearing association between governance and returns. Journal of financial economics, 108(2), 323-348. https://doi.org/10.1016/j.jfineco.2012.10.004 Etemadi, A., & Kasraei, A. (2019). The Effect of Knowledge Management on Supply Chain Performance in the Offshore Sector of Oil and Gas (Case study: Iranian Offshore Engineering and Construction Company). Strategic Management of Organizational Knowledge, 1(3), 185-205. https://dor.isc.ac/dor/20.1001.1.26454262.1397.1.3.6.6 (In Persian) Hashmdar, Akram, Kurdi, Murad. (2022). study of the effectiveness of artificial intelligence systems in human resources functions, 4(12), 1-6. https://doi.org/10.22083/jccs.2019.152109.2582 (In Persian) Helalian, Mutlaq, Fatemeh, Hassanzadeh, Mohammad, Zandian, Fatemeh. (2016). Analysis of mediating effects of knowledge management components in improving human resource performance (case study). Information Management Sciences and Techniques, 3(2), 7-27. (In Persian) Hintze, A. (2016). Understanding the four types of AI, from reactive robots to self-aware beings. The Conversation, 14. https://doi.org/10.3390/su122310061 Imamjomezadeh, Seyyed Javad, Amir Masoud Shahramnia, Amir Masoud, Safariani, Ruhollah. (2015). Model of Good Governance, Society for Efficient Government in Development Management, Political Science Quarterly, 12(36). https://doi.org/10.22054/tssq.2018.8389 (In Persian) Kandlhofer, M., Steinbauer, G., Hirschmugl-Gaisch, S., & Huber, P. (2016, October). Artificial intelligence and computer science in education: From kindergarten to university. In 2016 IEEE frontiers in education conference (FIE) (pp. 1-9). IEEE. https://doi.org/10.1109/FIE.2016.7757570 Kordab, M., Raudeliūnienė, J., & Meidutė-Kavaliauskienė, I. (2020). Mediating role of knowledge management in the relationship between organizational learning and sustainable organizational performance. Sustainability, 12(23), 10061. Long, T. & M. Johnson, "Rigour, reliability and Validity research", Clinical Effectiveness in Nursing, vol 4 (1),2000, p. 30-37. https://doi.org/10.1111/j.1365-2648.2006.03727 Maleki Hassanvand. Behzad Parsley Muhammad; Fatahi Shahram; Ghaffari Hadi. (2018). the mechanism of simultaneous effect of good governance and government spending on economic growth, Economic Management and Accounting, Volume 9(34) , 114-99. https://doi.org/10.30473/egdr.2018.40935.4865 Manning, C. (2022). Artificial Intelligence Definitions. Human Centered Artificial Intelligence (Stanford university). https://hai.stanford.edu/sites/default/files/2022-06/HAI_Terms_6_22.pdf. Maravilhas, S., & Martins, J. (2019). Strategic knowledge management in a digital environment: Tacit and explicit knowledge in Fab Labs. Journal of business research, 94, 353-359. https://doi.org/10.1016/j.jbusres.2018.01.061 Masa'deh, R. E., Almajali, D. A., Alrowwad, A. A., & Obeidat, B. (2019). The role of knowledge management infrastructure in enhancing job satisfaction: a developing country perspective. Interdisciplinary Journal of Information, Knowledge & Management, 14. https://doi.org/10.28945/4169 Moghimi, S. M., Vakili, F., & Monavarian, A. (2024). Designing an entrepreneurial policy making model for sustainable financing of Iran's health system (case study: health system of Kurdistan province). Journal of Entrepreneurship Development, 17(2), 56-84. https://doi.org/10.22059/jed.2024.374509.654349 (In Persian) Mokhtari, S. A. M., & Rezvani, R. (2023). Application of artificial intelligence in history education. https://sid.ir/paper/1052927/en (In Persian) Moradi, Hojjatollah, & Farzaneh Qale, Hojjat. (2018). Investigating the impact of knowledge management on the empowerment of employees of the Tehran City Crisis Management Organization. Crisis Management Studies, 10(35), 33-54. (In Persian) Nazir, S., Khadim, S., Asadullah, M. A., & Syed, N. (2023). Exploring the influence of artificial intelligence technology on consumer repurchase intention: The mediation and moderation approach. Technology in Society, 72, 102190. https://doi.org/10.1016/j.techsoc.2022.102190 Niazi, Milad. (2021). The role of knowledge management on quality management of supply chain and drug distribution (Case study: Razi Distribution Company). SCIENTIFIC CONFERENCE OF RECENT ACHIEVEMENTS IN IRANIAN MANAGEMENT STUDIES, ACCOUNTING AND ECONOMICS. SID. https://sid.ir/paper/949529/en (In Persian) Rahmatifar, Samaneh. (2017). The role of civil society in creating legal rules in the era of globalization with emphasis on non-governmental organizations: the transition of law from obligation to persuasion. Public Law Research, 18(54), 265-288. https://doi.org/10.22054/qjpl.2017.7436 (In Persian) Rehman, A., & Hashim, F. (2018, January). Forensic accounting on corporate governance maturity mediated by internal audit: A conceptual overview. In 1st Economics and Business International Conference 2017 (EBIC 2017) (pp. 161-168). Atlantis Press. https://doi.org/10.2991/ebic-17.2018.26 Safariyan, R., & Emamjomehzadeh, S. J. (2018). Model of good governance: Social capital and comprehensive development. State Studies, 3(12), 145-181. https://doi.org/10.22054/tssq.2018.8389 (In Persian) Sinaga, N. R. (2015). HUMAN-TECHNOLOGY RELATIONSHIP IN SPIKE JONZE’S HER (Doctoral dissertation, Diponegoro University). Thousand Oaks, CA Sage Copeland, B.J., Britannica, Artificial Intelligence (2020). https://www.britannica.com/technology/artificial-intelligence Torfing, J. (2012). Interactive governance: Advancing the paradigm. Oxford University Press, USA. Wang, C. C., Sung, H. Y., Chen, D. Z., & Huang, M. H. (2017). Strong ties and weak ties of the knowledge spillover network in the semiconductor industry. Technological Forecasting and Social Change, 118, 114-127. Whitehill, J., Serpell, Z., Lin, Y. C., Foster, A., & Movellan, J. R. (2014). The faces of engagement: Automatic recognition of student engagementfrom facial expressions. IEEE Transactions on Affective Computing, 5(1), 86-98. https://10.1109/TAFFC.2014.2316163 Yacoub, N. (2018). Universities’ Leadership Style in the Light of Governance Principles. International Review of Management and Busines. Yousaf, M., Ihsan, F., & Ellahi, A. (2016). Exploring the impact of good governance on citizens' trust in Pakistan. Government Information Quarterly, 33(1), 200-209. https://doi.org/10.1016/j.giq.2015.06.001 Zare, Shadi, Thabit, Abbas. (2019). Investigating the impact of knowledge management and human resource empowerment initiatives on talent management. Scientific Journal of New Research Approaches in Management and Accounting, 4(13), 143-156. https://doi.org/10.5539/ijbm.v15n3p1 (In Persian) Zarkani, Seyed Hadi, Ahmadi, Ibrahim. (2018). Good Governance in Local Governments, Decentralization, 5(19), 107-138. https://doi.org/10.22054/tssq.2019.18074.234 (In Persian) | ||
آمار تعداد مشاهده مقاله: 210 |