| تعداد نشریات | 36 |
| تعداد شمارهها | 1,348 |
| تعداد مقالات | 9,716 |
| تعداد مشاهده مقاله | 10,583,497 |
| تعداد دریافت فایل اصل مقاله | 6,474,548 |
کنترل تحملپذیر عیب فعال فضاپیمای انعطافپذیر با استفاده از مشاهدهگر تطبیقی مبتنیبر شبکه عصبی توابع پایه شعاعی | ||
| مکانیک هوافضا | ||
| مقاله 3، دوره 21، شماره 2 - شماره پیاپی 80، تیر 1404، صفحه 33-48 | ||
| نوع مقاله: گرایش دینامیک، ارتعاشات و کنترل | ||
| شناسه دیجیتال (DOI): 10.47176/MAJ.2025.1476 | ||
| نویسندگان | ||
| مرضیه اقلیمی دژ1؛ میلاد عظیمی* 2؛ علیرضا علیخانی2 | ||
| 1کارشناسی ارشد، پژوهشگاه هوافضا (وزارت علوم، تحقیقات و فناوری)، تهران، ایران | ||
| 2دانشیار، پژوهشگاه هوافضا (وزارت علوم، تحقیقات و فناوری)، تهران، ایران | ||
| تاریخ دریافت: 04 اردیبهشت 1404، تاریخ بازنگری: 12 خرداد 1404، تاریخ پذیرش: 21 خرداد 1404 | ||
| چکیده | ||
| در این مقاله به طراحی و توسعه الگوریتم کنترل تحملپذیر عیب مود لغزشی و مشاهدهگر تطبیقی، جهت مقابله با نامعینیهای سیستم، عیب عملگر و اغتشاشات خارجی برای یک فضاپیمای انعطافپذیر پرداخته شده است. جهت تخمین عیب عملگرهای وضعیت، یک مشاهدهگر تطبیقی مبتنی بر شبکه عصبی طراحی شده است. عملکرد این مشاهدهگر با یک مشاهدهگر یادگیری تکرارشونده مقایسه شده است. کنترل تحمل پذیر عیب پیشنهادی از یک سطح لغزش PID جهت افزایش عملکرد، قوام و پاسخ زمانی سریع برای یک فضاپیمای انعطاف پذیر با عیب عملگر بهره میبرد. علاوهبراین، الگوریتم کنترل فعال ارتعاشات فیدبک نرخ کرنش جهت کاهش موثر ارتعاشات با استفاده از عملگرها و حسگرهای پیزوالکتریک نیز طراحی شده است. پایداری سیستم حلقه بسته با استفاده از قضیه لیاپانوف مورد بررسی قرار گرفته است. یکی از ویژگیهای کلیدی رویکرد پیشنهادی، سادگی آن و همچنین توانایی آن جهت پایدارسازی سیستم با در نظر گرفتن خطا و توانایی تخمین عیب عملگر با حداقل بار محاسباتی است. شبیهسازیها در قالب یک مطالعه مقایسه ای، عملکرد، قوام و تحمل پذیری عیب رویکرد پیشنهادی، برای یک سیستم با دینامیک کاملا کوپل صلب انعطاف پذیر را نمایش میدهد. | ||
| کلیدواژهها | ||
| دینامیک صلب-انعطافپذیر؛ شبکه عصبی توابع پایه شعاعی؛ کنترل تحملپذیر عیب مود لغزشی؛ کنترل فعال ارتعاشات؛ فضاپیمای انعطافپذیر؛ مشاهدهگر عیب عملگر تطبیقی | ||
| عنوان مقاله [English] | ||
| Active Fault-Tolerant Sliding Mode Control of Flexible Spacecraft Using Adaptive Observer Based on Radial Basis Functions Neural Network | ||
| نویسندگان [English] | ||
| Marzieh Eghlimi Dezh1؛ Milad Azimi2؛ Alireza Alikhani2 | ||
| 1Master's degree, Aerospace Research Institute (Ministry of Science, Research and Technology), Tehran, Iran | ||
| 2Associate Professor, Aerospace Research Institute (Ministry of Science, Research and Technology), Tehran, Iran | ||
| چکیده [English] | ||
| This paper is focused on the design and analysis of a fault-tolerant sliding mode control algorithm together with an adaptive observer for applications to a flexible spacecraft in order to attenuate system uncertainties, actuator faults, and external disturbances. For estimation of the actuator faults, an adaptive observer is designed using a radial basis function neural network, whose performance is compared with an iterative learning observer. The proposed fault-tolerant control adopts a PID sliding surface for high performance, robustness, and fast response. Additionally, the vibration suppression control algorithm based on strain rate feedback was designed for active suppression of structural vibrations using piezoelectric actuators and sensors. Stability analysis of the closed-loop system is performed using the Lyapunov theorem to ensure its robust performance. A key feature of the proposed approach is its simplicity and its ability to stabilize the system under fault conditions while providing accurate actuator fault estimation with minimal computational burden. Simulations, presented as a comparative study, demonstrate the superior performance, robustness, and fault-tolerance of the proposed approach for a system with fully coupled rigid-flexible dynamics. | ||
| کلیدواژهها [English] | ||
| Rigid-flexible dynamics, Radial basis function neural network, Sliding mode fault-tolerant control, Active vibration control, Flexible spacecraft, Adaptive actuator fault observer | ||
| مراجع | ||
|
[1] Hu H, Wang B, Cheng Z, Liu L, Wang Y, Luo X. A novel active fault-tolerant control for spacecrafts with full state constraints and input saturation. Aerospace Science and Technology. 2021;108:106368. [2] Wang Y, Liu K, Ji H. Adaptive robust fault-tolerant control scheme for spacecraft proximity operations under external disturbances and input saturation. Nonlinear Dynamics. 2022:1-16. [3] Ma Y, Jiang B, Tao G, Badihi H. Minimum-eigenvalue-based fault-tolerant adaptive dynamic control for spacecraft. Journal of Guidance, Control, and Dynamics. 2020;43(9):1764-71. [4] Yin S, Xiao B, Ding SX, Zhou D. A review on recent development of spacecraft attitude fault tolerant control system. IEEE Transactions on Industrial Electronics. 2016;63(5):3311-20. [5] Ding SX. Advanced methods for fault diagnosis and fault-tolerant control: Springer; 2021. [6] Abbaspour A, Mokhtari S, Sargolzaei A, Yen KK. A survey on active fault-tolerant control systems. Electronics. 2020;9(9):1513. [7] Zenteno-Torres J, Cieslak J, Dávila J, Henry D. Sliding mode control with application to fault-tolerant control: assessment and open problems. Automation. 2021;2(1):1-30. [8] Cong B, Chen Z, Liu X. On adaptive sliding mode control without switching gain overestimation. International Journal of Robust and Nonlinear Control. 2014;24(3):515-31. [9] Yu X-N, Hao L-Y. Integral sliding mode fault tolerant control for unmanned surface vessels with quantization: Less iterations. Ocean Engineering. 2022;260:111820. [10] Aydin MN, Coban R. PID sliding surface-based adaptive dynamic second-order fault-tolerant sliding mode control design and experimental application to an electromechanical system. International Journal of Control. 2022;95(7):1767-76. [11] Duc MN, Trong TN, Xuan YS, editors. The quadrotor MAV system using PID control. 2015 IEEE International Conference on Mechatronics and Automation (ICMA); 2015: IEEE. [12] Ward DG, Monaco JF, Bodson M. Development and flight testing of a parameter identification algorithm for reconfigurable control. Journal of Guidance, Control, and Dynamics. 1998;21(6):948-56. [13] Hasan A. Observer‐based fault diagnosis for autonomous systems. International Journal of Robust and Nonlinear Control. 2024. [14] Singh V, Gangsar P, Porwal R, Atulkar A. Artificial intelligence application in fault diagnostics of rotating industrial machines: A state-of-the-art review. Journal of Intelligent Manufacturing. 2023;34(3):931-60. [15] Li T, Zhang Y, Gordon BW. Passive and active nonlinear fault-tolerant control of a quadrotor unmanned aerial vehicle based on the sliding mode control technique. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering. 2013;227(1):12-23. [16] Wenjie D, Dayi W, Chengrui L. Integral sliding mode fault‐tolerant control for spacecraft with uncertainties and saturation. Asian Journal of Control. 2017;19(1):372-81. [17] Zhang B, Sun X, Liu S, Deng X. Distributed fault tolerant model predictive control for multi‐unmanned aerial vehicle system. Asian Journal of Control. 2022;24(3):1273-92. [18] Gao S, Jing Y, Liu X, Dimirovski GM. Finite‐time adaptive fault‐tolerant control for rigid spacecraft attitude tracking. Asian Journal of Control. 2021;23(2):1003-24. [19] De Loza AF, Cieslak J, Henry D, Zolghadri A, Fridman LM. Output tracking of systems subjected to perturbations and a class of actuator faults based on HOSM observation and identification. Automatica. 2015;59:200-5. [20] Shen Q, Jiang B, Cocquempot V. Adaptive fuzzy observer-based active fault-tolerant dynamic surface control for a class of nonlinear systems with actuator faults. IEEE Transactions on Fuzzy Systems. 2013;22(2):338-49. [21] Gao Z, Han B, Jiang G, Lin J, Xu D. Active fault tolerant control design approach for the flexible spacecraft with sensor faults. Journal of the Franklin Institute. 2017;354(18):8038-56. [22] Wang S, Hui Y, Sun X, Shi D. Neural network sliding mode control of intelligent vehicle longitudinal dynamics. Ieee Access. 2019;7:162333-42. [23] Zou T, Wu H, Sun W, Zhao Z. Adaptive neural network sliding mode control of a nonlinear two‐degrees‐of‐freedom helicopter system. Asian Journal of Control. 2023;25(3):2085-94. [24] Mokhtari S, Abbaspour A, Yen KK, Sargolzaei A. Neural network-based active fault-tolerant control design for unmanned helicopter with additive faults. Remote Sensing. 2021;13(12):2396. [25] Vo AT, Kang H-J. An adaptive neural non-singular fast-terminal sliding-mode control for industrial robotic manipulators. Applied Sciences. 2018;8(12):2562. [26] Xin W, WANG J, LI X. A Feed‐Forward Wavelet Neural Network Adaptive Observer‐Based Fault Detection Technique for Spacecraft Attitude Control Systems. Chinese Journal of Electronics. 2018;27(1):102-8. [27] Lu K, Li T, Zhang L. Active attitude fault-tolerant tracking control of flexible spacecraft via the Chebyshev neural network. Transactions of the Institute of Measurement and Control. 2019;41(4):925-33. [28] Song G, Agrawal BN. Vibration suppression of flexible spacecraft during attitude control. Acta Astronautica. 2001;49(2):73-83. [29] Azimi M, Sharifi G. A hybrid control scheme for attitude and vibration suppression of a flexible spacecraft using energy-based actuators switching mechanism. Aerospace Science and Technology. 2018;82:140-8. [30] Marinangeli L, Alijani F, HosseinNia SH. Fractional-order positive position feedback compensator for active vibration control of a smart composite plate. Journal of Sound and Vibration. 2018;412:1-16. [31] Omidi E, Mahmoodi SN. Vibration control of collocated smart structures using H∞ modified positive position and velocity feedback. Journal of Vibration and Control. 2016;22(10):2434-42. [32] Zhang Q, Mills JK, Cleghorn WL, Jin J, Zhao C. Trajectory tracking and vibration suppression of a 3-PRR parallel manipulator with flexible links. Multibody System Dynamics. 2015;33:27-60. [33] Malekzadeh M, Karimpour H. Adaptive super twisting vibration control of a flexible spacecraft with state rate estimation. Journal of Sound and Vibration. 2018;422:300-17. [34] Shahravi M, Azimi M. Attitude and vibration control of flexible spacecraft using singular perturbation approach. International Scholarly Research Notices. 2014;2014. [35] Xiao B, Hu Q, Wang D. Spacecraft attitude fault tolerant control with terminal sliding-mode observer. Journal of Aerospace Engineering. 2015;28(1):04014055. [36] Wen G, Chen CP, Liu Y-J, Liu Z. Neural network-based adaptive leader-following consensus control for a class of nonlinear multiagent state-delay systems. IEEE transactions on cybernetics. 2016;47(8):2151-60. [37] Battilotti S, De Santis A. Robust output feedback control of nonlinear stochastic systems using neural networks. IEEE Transactions on neural networks. 2003;14(1):103-16. [38] Fan B, Zhang Y, Chen Y, Meng L. Intelligent vehicle lateral control based on radial basis function neural network sliding mode controller. CAAI Transactions on Intelligence Technology. 2022;7(3):455-68. [39] Chen CP, Wan JZ. A rapid learning and dynamic stepwise updating algorithm for flat neural networks and the application to time-series prediction. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics). 1999;29(1):62-72. [40] Zhang L, Hua C, Guan X. Distributed output feedback consensus tracking prescribed performance control for a class of non‐linear multi‐agent systems with unknown disturbances. IET Control Theory & Applications. 2016;10(8):877-83. [41] Corless M, Leitmann G. Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamic systems. IEEE Transactions on Automatic Control. 1981;26(5):1139-44. [42] Noordin A, Mohd Basri MA, Mohamed Z, Mat Lazim I. Adaptive PID controller using sliding mode control approaches for quadrotor UAV attitude and position stabilization. Arabian Journal for Science and Engineering. 2021;46:963-81. [43] Kuriakose VM, Sreehari V. Experimental investigation on the enhancement of vibration and flutter characteristics of damaged composite plates using piezoelectric patches. Composite Structures. 2021;275:114518. [44] Hu Q, Li B, Xiao B, Zhang Y, Hu Q, Li B, et al. Spacecraft attitude fault-tolerant control based on iterative learning observer and control allocation. Control Allocation for Spacecraft Under Actuator Faults. 2021:133-55. [45] Hu Q. Robust adaptive sliding mode attitude maneuvering and vibration damping of three-axis-stabilized flexible spacecraft with actuator saturation limits. Nonlinear Dynamics. 2009;55:301-21. | ||
|
آمار تعداد مشاهده مقاله: 3,266 تعداد دریافت فایل اصل مقاله: 45 |
||