
تعداد نشریات | 34 |
تعداد شمارهها | 1,306 |
تعداد مقالات | 9,427 |
تعداد مشاهده مقاله | 9,188,305 |
تعداد دریافت فایل اصل مقاله | 5,620,738 |
مدلسازی عددی دیوار بنایی تقویت شده با کامپوزیتهای FRP به منظور بررسی تأثیر آرایشهای مختلف FRP بر رفتار دیوار در برابر انفجار | ||
علوم و فناوریهای پدافند نوین | ||
مقاله 5، دوره 15، شماره 1 - شماره پیاپی 55، خرداد 1403، صفحه 45-56 اصل مقاله (1.21 M) | ||
نوع مقاله: عمران - سازه | ||
نویسندگان | ||
مهدی یزدانی1؛ سید احمد حسینی* 2 | ||
1دانشجوی دکتری،دانشگاه علم و صنعت ایران، تهران، ایران | ||
2استادیار، دانشگاه صنعتی مالک اشتر، تهران، ایران | ||
تاریخ دریافت: 14 اسفند 1402، تاریخ بازنگری: 02 اردیبهشت 1403، تاریخ پذیرش: 12 اردیبهشت 1403 | ||
چکیده | ||
سازههای بنایی پتانسیل خرابی شدیدی در انفجار داشته و باتوجهبه افزایش حوادث تروریستی، مقاومسازی این ساختمانها ضروری به نظر میرسد. در سی سال گذشته، پلیمرهای مسلح شده با الیاف (FRP) کاربرد گسترده و مناسبی در امر مقاومسازی و بهبود عملکرد این سازهها داشته است. مدلسازی به روش اجزا محدود ضمن ایجاد زمینهای برای درک بهتر رفتار دیوارهای بنایی، در پیشبینی رفتار این اعضا پس از تقویت مخصوصاً در فقدان نتایج آزمایشگاهی بسیار مفید خواهد بود. در این پژوهش، با استفاده از مدلسازی عددی در نرمافزار آباکوس، رفتار دیوارهای بنایی تقویتشده با ورقهای FRP در برابر انفجاری با خرج ماده منفجره معادل 150 کیلوگرم TNT در فاصله 5 متری مورد بررسی قرار گرفت. جنس فیبر، عرض نوار، ضخامت نوار، مساحت و زاویه نوارهای FRP از پارامترهای تأثیرگذاری بودند که در این تحقیق مورد کنکاش قرار گرفتند. نتایج حاصل از مدلسازی نشان میدهد که این روش مقاومسازی برای تقویت دیوار بنایی در مقابل انفجار کارآمد بوده بهطوریکه جابجایی مرکز دیوار و انرژی کل آن را بهطور قابل توجهی کاهش داده است. علاوه بر این مقاومسازی دیوارها با نوارهای افقی در مقایسه با نوارهای عمودی و قطری، عملکرد دیوار را به مقدار بیشتری بهبود میبخشد. | ||
کلیدواژهها | ||
دیوار بنایی؛ انفجار؛ مقاومسازی؛ کامپوزیت FRP؛ مدلسازی عددی | ||
عنوان مقاله [English] | ||
Numerical Modeling of Reinforced Masonry Wall with FRP Composites to Investigate the Effect of Different FRP Arrangements on the Behavior of Masonry Wall Subjected to Blast Loading | ||
نویسندگان [English] | ||
mahdi yazdani1؛ seied ahmad hosseini2 | ||
1PhD Student, Iran University of Science and Technology, Tehran, Iran | ||
2Assistant Professor, Malek Ashtar University of Technology, Tehran, Iran | ||
چکیده [English] | ||
Masonry structures have a high potential for severe damage in explosions, and given the increase in terrorist incidents, reinforcing these buildings seems necessary. Over the past thirty years, fiber-reinforced polymers (FRP) have been widely and effectively used for strengthening and improving the performance of these structures. Finite element modeling, while providing a basis for better understanding the behavior of masonry walls, is very useful in predicting the behavior of these members after reinforcement, especially in the absence of experimental results. In this study, using numerical modeling in Abaqus software, the behavior of masonry walls reinforced with FRP sheets against an explosion with a charge equivalent to 150 kg of TNT at a distance of 5 meters was investigated, and the necessary and influential parameters for evaluating the application of this reinforcement method were analyzed. Fiber material, width, thickness, area and arrangement angle of the FRP sheets are among the parameters affecting the behavior of reinforced masonry walls. The results of the modeling show that this reinforcement method is effective for strengthening masonry walls against explosions, significantly reducing the displacement of the wall center and its total energy. Additionally, reinforcing walls with horizontal strips, compared to vertical and diagonal strips, improves the wall’s performance to a greater extent. | ||
کلیدواژهها [English] | ||
Masonry wall, Explosion, Strengthening, FRP Composite, Numerical Modeling | ||
مراجع | ||
[1] Furtado, A.; Rodrigues, H.; Arêde, A.; Varum, H. “Experimental Evaluation of Out-of-Plane Capacity of Masonry Infill Walls”; Eng. Struct. 2016, 111, 48–63. doi:10.1016/j.engstruct.2015.12.013. [2] Shamim, S.; Ahmad, S.; Khan, R. A. “An Investigation on Response of Blast Load on Masonry Structure”; Smart Cities—Opportunities and Challenges: Select Proceedings of ICSC 2019, 527–537. doi:10.1007/978-981-15-2545-2-44. [3] Shamim, S.; Ahmad, S.; Khan, R. A. “Numerical Study on Dynamic Response of Hollow and Cavity Type Clay Brick Masonry Infill Panels Subjected to Blast Loading”; Eng. Fail. Anal. 2023, 146, 107104. doi:10.1016/j.engfailanal.2023. 107104. [4] Badshah, E.; Naseer, A.; Ashraf, M.; Ahmad, T. “Response of Masonry Systems Against Blast Loading”; Def. Technol. 2021, 17, 1326–1337. doi:10.1016/j.dt.2020.07.003. [5] Chiquito, M.; López, L. M.; Castedo, R.; Pérez-Caldentey, A.; Santos, A. P. “Behaviour of Retrofitted Masonry Walls Subjected to Blast Loading: Damage Assessment”; Eng. Struct. 2019, 201, 109805. doi:10.1016/j.engstruct.2019. 109805. [6] Shamim, S.; Khan, R. A.; Ahmad, S. “Fragility Analysis of Masonry Wall Subjected to Blast Loading”; Struct. 2022, 39, 1016–1030. doi:10.1016/j.istruc.2022.03.056. [7] Hatfield, J. E.; Davidson, J. S. “Fragmentation and Hazard Analysis of Brittle Materials Under Far-Field Blast Loading”; Adv. Struct. Eng. 2022, 25, 1535–1548. DOI:10.1177/13694332221087339 [8] Dong, Z.; Ji, J. H.; Liu, Z. Q.; Wu, C.; Wu, G.; Zhu, H.; Zhang, P. “I-Shaped ECC/UHPC Composite Beams Reinforced With Steel Bars and BFRP Sheets”; Sustain. Struct. 2023, 3, 000022[v1] . DOI: 10.54113/j.sust.2023.000022 [9] Yan, J.; Liu, Y.; Xu, Z.; Li, Z.; Huang, F. “Experimental and Numerical Analysis of CFRP Strengthened RC Columns Subjected to Close-In Blast Loading”; Int. J. Impact Eng. 2020, 146, 103720. doi:10.1016/j.ijimpeng.2020.103720. [10] Li, H.; Chen, B.; Fei, B.; Li, H.; Xiong, Z.; Lorenzo, R.; Fang, C.; Ashraf, M. “Mechanical Properties of Aramid Fiber Reinforced Polymer Confined Laminated Bamboo Lumber Column Under Cyclic Loading”; Eur. J. Wood Wood Prod. 2022, 80, 1057–1070. doi:10.1007/s00107-022-01816-4. [11] Elshazli, M. T.; Saras, N.; Ibrahim, A. “Structural Response of High Strength Concrete Beams Using Fiber Reinforced Polymers Under Reversed Cyclic Loading”; Sustain. Struct. 2022, 2, 000018. doi: 10.54113/j.sust.2022.000018. [12] Liang, R.; Hota, G. “Development and Evaluation of Load-Bearing Fiber Reinforced Polymer Composite Panel Systems With Tongue and Groove Joints”; Sustain. Struct. 2021, 1[v2] , 1-22 DOI:10.54113/j.sust.2021.000008 [13] Olonisakin, K.; He, S.; Yang, Y.; Wang, H.; Li, R.; Yang, W. “Influence of Stacking Sequence on Mechanical Properties and Moisture Absorption of Epoxy-Based Woven Flax and Basalt Fabric Hybrid Composites”; Sustain. Struct. 2022, 2, 16. doi: 10.54113/j.sust.2022.000016. [14] Hosseini, M.; Jian, B.; Li, H.; Yang, D.; Wang, Z.; Feng, Z.; Shen, F.; Zhang, J.; Lorenzo, R.; Corbi, I.; Corbi, O. “A Review of Fibre Reinforced Polymer (FRP) Reinforced Concrete Composite Column Members Modelling and Analysis Techniques”; J. Renew. Mater. 2022, 10, 3243–3262. doi:10.32604/jrm.2022.022171. [15] Wilt, J.; Liang, R.; GangaRao, H.; Mostoller, J. “Structural Responses of FRP Sheet Piles Under Cantilever Loading”; Sustain. Struct. 2023, 3[v3] , 1-17 DOI:10.54113/j.sust.2023.000021 [16] Jacques, E. “Blast Retrofit of Reinforced Concrete Walls and Slabs”; University of Ottawa (Canada), 2011. [17] Orton, S. L.; Chiarito, V. P.; Minor, J. K.; Coleman, T. G. “Experimental Testing of CFRP-Strengthened Reinforced Concrete Slab Elements Loaded by Close-In Blast”; J. Struct. Eng. 2014, 140, 04013060. doi:10.1061/(ASCE)ST.1943-541X.0000821. [18] Mutalib, A. A.; Hao, H. “Numerical Analysis of FRP-Composite-Strengthened RC Panels With Anchorages Against Blast Loads”; J. Perform. Constr. Facil. 2011, 25, 360–372. doi:10.1061/(ASCE)CF.1943-5509.0000199. [19] Elanchezhian, C.; Ramnath, B. V.; Hemalatha, J. “Mechanical Behaviour of Glass and Carbon Fibre Reinforced Composites at Varying Strain Rates and Temperatures”; Procedia Mater. Sci. 2014, 6, 1405–1418. doi:10.1016/j.mspro.2014.07.120. [20] Yavartanoo, F.; Kang, T. H. K. “Retrofitting of Unreinforced Masonry Structures and Considerations for Heritage-Sensitive Constructions”; J. Build. Eng. 2022, 49, 103993. doi:10.1016/j.jobe.2022.103993. [23] Reifarth, C.; Castedo, R.; Santos, A. P.; Chiquito, M.; López, L. M.; Pérez-Caldentey, A.; Martínez-Almajano, S.; Alañon, A. “Numerical and Experimental Study of Externally Reinforced RC Slabs Using FRPs Subjected to Close-In Blast Loads”; Int. J. Impact Eng. 2021, 156, 103939. doi:10.1016/j.ijimpeng.2021.103939. [24] Gemi, L.; Madenci, E.; Özkılıç, Y. O.; Yazman, Ş.; Safonov, A. “Effect of Fiber Wrapping on Bending Behavior of Reinforced Concrete Filled Pultruded GFRP Composite Hybrid Beams”; Polymers 2022, 14, 3740. doi:10.3390/ polym14183740. [26] Abdulla, K. F.; Cunningham, L. S.; Gillie, M. “Simulating Masonry Wall Behaviour Using a Simplified Micro-Model Approach”; Eng. Struct. 2017. 151, 349-365. doi:10.1016/ j.engstruct.2017.08.021 [27] D'Altri, A. M.; de Miranda, S.; Castellazzi, G.; Sarhosis, V. “A 3D Detailed Micro-Model for the In-Plane and Out-of-Plane Numerical Analysis of Masonry Panels”; Comput. Struct. 2018, 206, 18-30. doi:10.1016/j.compstruc.2018. [28] Shin, D. K.; Kim, H. C.; Lee, J. J. “Numerical Analysis of the Damage Behavior of an Aluminum/CFRP Hybrid Beam under Three Point Bending”; Composites Part B. 2014, 56, 397-407. doi:10.1016/j.compositesb.2013.08.030. [29] Karlos, V.; Solomos, G. “Calculation of Blast Loads for Application to Structural Components”; Luxembourg: Publications Office of the European Union, 2013, 5. [30] Motovali Emami, S. M.; Mohammadi, M.; Lourenço, P. B. “Equivalent Diagonal Strut Method for Masonry Walls in Pinned Connection and Multi-Bay Steel Frames”; Journal of Seismology and Earthquake Engineering 2017, 19, 299-311. [31] Raza, A.; Ali, B.; Nawaz, M. A.; Ahmed, I. “Structural Performance of FRP-RC Compression Members Wrapped with FRP Composites”; Structures 2020, 27, 1693-1709. [32] Chiquito, M.; Castedo, R.; Santos, A. P.; López, L. M.; Pérez-Caldentey, A. “Numerical Modelling and Experimental Validation of the Behaviour of Brick Masonry Walls Subjected to Blast Loading”; Int. J. Impact Eng. 2021, 148, 103760. doi:10.1016/j.ijimpeng.2020.103760. [34] Szyniszewski, S.; Krauthammer, T. “Energy Flow in Progressive Collapse of Steel Framed Buildings”; Eng. Struct. 2012, 42, 142-153. doi.org/10.1016/j.engstruct.2012.
| ||
آمار تعداد مشاهده مقاله: 65 تعداد دریافت فایل اصل مقاله: 7 |