
تعداد نشریات | 34 |
تعداد شمارهها | 1,306 |
تعداد مقالات | 9,427 |
تعداد مشاهده مقاله | 9,188,349 |
تعداد دریافت فایل اصل مقاله | 5,620,771 |
شناسایی و ارزیابی موانع حوزه فروش به منظور کاهش بحرانهای زنجیره تأمین موادغذایی | ||
مدیریت زنجیره تأمین | ||
مقاله 2، دوره 27، شماره 86، خرداد 1404، صفحه 19-29 اصل مقاله (1.12 M) | ||
نوع مقاله: پژوهشی | ||
نویسندگان | ||
محمد اسکندری* 1؛ مسعود دارابی1؛ حامد اصغری2 | ||
1استادیار مجتمع دانشگاهی مهندسی و پدافند غیر عامل، دانشگاه صنعتی مالک اشتر، تهران، ایران | ||
2کارشناسی ارشد رشته مدیریت بحران دانشکده مهندسی و پدافند غیر عامل، دانشگاه صنعتی مالک اشتر، تهران، ایران | ||
تاریخ دریافت: 14 مهر 1403، تاریخ بازنگری: 26 آبان 1403، تاریخ پذیرش: 27 فروردین 1404 | ||
چکیده | ||
نوسانات قیمت مواد غذایی در پی بحران جهانی غذا در سالهای اخیر، بهدلیل چالشهای زنجیره تأمین از جمله منابع کشاورزی، تولید و توزیع، بهویژه بر معیشت خانوارهای کمدرآمد، به یک معضل جدی تبدیل شده است و فعالان زنجیره تأمین معتقدند که این نوسانات تأثیرات منفی بر تصمیمگیری، برنامهریزی و نحوه مدیریت مالی آنها دارد؛ بنابراین، هدف این تحقیق تحلیل و شناسایی عوامل کلیدی است که به تهدید حوزه فروش میانجامد. برای این منظور از یک رویکرد یکپارچه فازی شامل تجزیهوتحلیل طبقهبندی شده (MICMAC) و مدلسازی ساختاری تفسیری کل (TISM) استفاده شده است؛ با توجه به بررسیهای انجامشده از تحقیقهای قبلی و بر اساس بازخورد کارشناسان، 14 عامل در ابتدا شناسایی و پس از بهکارگیری تحلیل پارتو، 11 عامل برای تجزیهوتحلیل بعدی انتخاب شدند که در دسترس بودن سیستم اعتباری (R3)، انعطاف به نوسان تقاضا (R4)، دقت در پیشبینی تقاضا (R5)، عوامل چرخه عمر محصول کوتاهتر (R6)، عدم پایبندی به تعهدات (R10) و پاسخگویی (R2) از مهمترین عوامل هستند؛ انتظار میرود این تحقیق علاوه بر ارائه راهکارهای استراتژیک برای کاهش مخاطرات حوزه فروش در زنجیره تأمین مواد غذایی در آینده، به مدیران و سیاستگذاران کمک کند تا با اتخاذ تصمیمات مؤثر و مبتنی بر داده، به بهبود عملکرد زنجیره تأمین و در نهایت تحقق اهداف توسعه پایدار دست یابند. | ||
کلیدواژهها | ||
زنجیره تأمین مواد غذایی؛ بحران فروش؛ تئوری فازی؛ کاهش خطرپذیری | ||
عنوان مقاله [English] | ||
Identification and assessment of risks in the sales barriers to reduce food supply chain crises | ||
نویسندگان [English] | ||
mohammad Eskandari1؛ Masoud Darabi1؛ HAMED ASGHARI2 | ||
1Assistant Professor, faculty of Engineering and Passive Defense, Malek Ashtar University of Technology,Tehran,Iran | ||
2crisis management of non-operating engineering and defense academic complex, Malik Ashtar University of Technology | ||
چکیده [English] | ||
The fluctuations in food prices following the global food crisis in recent years have become a serious problem due to supply chain challenges, including agricultural resources, production, and distribution, particularly a0ffecting the livelihoods of low-income households. Stakeholders in the supply chain believe that these fluctuations have negative impacts on their decision-making, planning, and financial management. Therefore, the aim of this research is to analyze and identify the key factors that threaten the sales sector. To achieve this, a fuzzy integrated approach has been employed, incorporating classified analysis (MICMAC) and Total Interpretive Structural Modeling (TISM). Based on reviews of previous studies and feedback from experts, 14 factors were initially identified, and after applying Pareto analysis, 11 factors were selected for further analysis. The most significant factors include the availability of credit systems (R3), flexibility to demand fluctuations (R4), accuracy in demand forecasting (R5), shorter product life cycle factors (R6), non-compliance with commitments (R10), and accountability (R2). It is expected that this research will not only provide strategic solutions to reduce risks in the sales sector of the food supply chain in the future but will also assist managers and policymakers in making effective, data-driven decisions to improve supply chain performance and ultimately achieve sustainable development goals. | ||
کلیدواژهها [English] | ||
Food supply chain, sales crisis, fuzzy theory, risk reduction | ||
مراجع | ||
[1] P. Marchand, J. A. Carr, J. D. Angelo, M. Fader, J. A. Gephart, M. Kummu, N. R Magliocca, M. Porkka, M. J. Puma, Z. Ratajczak, M. C. Rulli, D. A. Seekell, S. Suweis, A. Tavoni, and P. D. Odorico, “Reserves and trade jointly determine exposure to food supply shocks,” Environmental Research Letters, vol. 11, no. 9, p. 095009, Sep. 2016, doi: https://doi.org/10.1088/1748-9326/11/9/095009. [2] E. K. ÖZEKENCİ, “The Selection of Logistics Center Location Based on AHP-TOPSIS Method: A Study on Çukurova Region,” Tarsus Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, vol. 4, no. 1, pp. 70–84, Jun. 2023, doi: https://doi.org/10.56400/tarsusiibfdergisi.1273882. [3] D. D. Headey and K. Hirvonen, “A food crisis was brewing even before the Ukraine war- but taking these three steps could help the most vulnerable,” Jan. 2023, doi: https://doi.org/10.2499/9780896294394_02. [4] K. A. Mottaleb, G. Kruseman, and S. Snapp, “Potential impacts of Ukraine-Russia armed conflict on global wheat food security: A quantitative exploration,” Global Food Security, vol. 35, no. 100659, p. 100659, Dec. 2022, doi: https://doi.org/10.1016/j.gfs.2022.100659. [5] S. Shabala, “Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops,” Annals of Botany, vol. 112, no. 7, pp. 1209–1221, Oct. 2013, doi: https://doi.org/10.1093/aob/mct205. [6] A. Iglesias and L. Garrote, “Adaptation strategies for agricultural water management under climate change in Europe,” Agricultural Water Management, vol. 155, pp. 113–124, Jun. 2015, doi: https://doi.org/10.1016/j.agwat.2015.03.014. [7] R. Arezki, K. E. Aynaoui, Y. Nyarko, and F. Teal, “Food price volatility and its consequences: introduction,” Oxford Economic Papers, vol. 68, no. 3, pp. 655–664, Jul. 2016, doi: https://doi.org/10.1093/oep/gpw019. [8] E. Abokyi, D. Strijker, K. F. Asiedu, and M. N. Daams, “The impact of output price support on smallholder farmers’ income: evidence from maize farmers in Ghana,” Heliyon, vol. 6, no. 9, p. e05013, Sep. 2020, doi: https://doi.org/10.1016/j.heliyon.2020.e05013. [9] A. A. Amoah Osei, S. Etuah, F. Nimoh, B. O. Asante, I. Abunyuwah, and N. O. Mensah, “Does fuel price volatility induce price instability in the agricultural commodity supply chain? empirical evidence from ghana,” Journal of Agriculture and Food Research, vol. 17, pp. 101216–101216, Sep. 2024, doi: https://doi.org/10.1016/j.jafr.2024.101216. [10] A. A. A. Osei, S. Etuah, R. Aidoo, S. C. Fialor, and F. Adams, “Drivers of smoked marine fish prices and challenges along the value chain,” International Journal of Social Economics, vol. 50, no. 2, pp. 242–259, Sep. 2022, doi: https://doi.org/10.1108/ijse-09-2021-0566. [11] Y. J. Mgale, S. Timothy, and P. Dimoso, “Measuring Rice Price Volatility and Its Determinants in Tanzania: An Implication for Price Stabilization Policies,” Theoretical Economics Letters, vol. 12, no. 02, pp. 546–563, 2022, doi: https://doi.org/10.4236/tel.2022.122031. [12] G. W. Ralston, L. Kilgore, F. B. Wyatt, D. Buchan, and J. S. Baker, “Weekly Training Frequency Effects on Strength Gain: A Meta-Analysis,” Sports Medicine - Open, vol. 4, no. 1, Aug. 2018, doi: https://doi.org/10.1186/s40798-018-0149-9. [13] H. Jordaan, B. Grové, A. Jooste, and Z. G. Alemu, “Measuring the Price Volatility of Certain Field Crops in South Africa using the ARCH/GARCH Approach,” Agrekon, vol. 46, no. 3, pp. 306–322, Sep. 2007, doi: https://doi.org/10.1080/03031853.2007.9523774. [14] A. A. Cariappa, K. K. Acharya, C. A. Adhav, R. Sendhil, P. Ramasundaram, A. Kumar, S. Singh, and G. P. Singh “COVID-19 induced lockdown effect on wheat supply chain and prices in India – Insights from state interventions led resilience,” Socio-Economic Planning Sciences, p. 101366, Jun. 2022, doi: https://doi.org/10.1016/j.seps.2022.101366. [15] H. C. Ezeaku, S. A. Asongu, and J. Nnanna, “Volatility of international commodity prices in times of COVID-19: Effects of oil supply and global demand shocks,” The Extractive Industries and Society, vol. 8, no. 1, pp. 257–270, Mar. 2021, doi: https://doi.org/10.1016/j.exis.2020.12.013. [16] R. Arezki, K. E. Aynaoui, Y. Nyarko, and F. Teal, “Food price volatility and its consequences: introduction,” Oxford Economic Papers, vol. 68, no. 3, pp. 655–664, Jul. 2016, doi: https://doi.org/10.1093/oep/gpw019. [17] I. O. Fasanya and T. F. Odudu, “Modeling return and volatility spillovers among food prices in Nigeria,” Journal of Agriculture and Food Research, vol. 2, p. 100029, Dec. 2020, doi: https://doi.org/10.1016/j.jafr.2020.100029. [18] A. A. Salisu, R. Swaray, and T. F. Oloko, “Improving the predictability of the oil–US stock nexus: The role of macroeconomic variables,” Economic Modelling, vol. 76, pp. 153–171, Jan. 2019, doi: https://doi.org/10.1016/j.econmod.2018.07.029. [19] P. Singh, M. Goyal, B. B. Choudhary, and A. Guleria, “Sustainable food security index: planning tool for district-level agricultural development in Uttar Pradesh,” Agricultural Economics Research Review, vol. 34, no. 1, pp. 51–67, 2021, doi: https://doi.org/10.5958/0974-0279.2021.00004.5. [20] A. A. A. Osei, S. Etuah, F. Nimoh, B. O. Asante, I. Abunyuwah, and N. O. Mensah, “Does fuel price volatility induce price instability in the agricultural commodity supply chain? empirical evidence from ghana,” Journal of Agriculture and Food Research, vol. 17, pp. 101216–101216, Sep. 2024, doi: https://doi.org/10.1016/j.jafr.2024.101216. [21] R. Levi, S. Singhvi, and Y. Zheng, “Artificial Shortage in Agricultural Supply Chains,” Manufacturing & Service Operations Management, Nov. 2021, doi: https://doi.org/10.1287/msom.2021.1010. [22] K. Govindan, M. Shaw, and A. Majumdar, “Social Sustainability Tensions in Multi-tier Supply Chain: a Systematic Literature Review Towards Conceptual Framework Development,” Journal of Cleaner Production, vol. 279, no. 123075, p. 123075, Jul. 2020, doi: https://doi.org/10.1016/j.jclepro.2020.123075. [23] J. F. Galvez, J. C. Mejuto, and J. S. Gandara, “Future challenges on the use of blockchain for food traceability analysis,” TrAC Trends in Analytical Chemistry, vol. 107, no. 107, pp. 222–232, Oct. 2018, doi: https://doi.org/10.1016/j.trac.2018.08.011. [24] N. Patel, A. Shukla, S. Tanwar, and D. Singh, “KRanTi: Blockchain‐based farmer’s credit scheme for agriculture‐food supply chain,” Transactions on Emerging Telecommunications Technologies, Apr. 2021, doi: https://doi.org/10.1002/ett.4286. [25] R. K. Singh, S. Modgil, and P. Acharya, “Assessment of Supply Chain Flexibility Using System Dynamics Modeling,” Global Journal of Flexible Systems Management, vol. 20, no. S1, pp. 39–63, Nov. 2019, doi: https://doi.org/10.1007/s40171-019-00224-7. [26] V. Gružauskas, E. Gimžauskienė, and V. Navickas, “Forecasting accuracy influence on logistics clusters activities: The case of the food industry,” Journal of Cleaner Production, vol. 240, p. 118225, Dec. 2019, doi: https://doi.org/10.1016/j.jclepro.2019.118225. [27] C. Paciarotti and F. Torregiani, “The Logistics of the Short Food Supply chain: a Literature Review,” Sustainable Production and Consumption, vol. 26, pp. 428–442, Oct. 2020, doi: https://doi.org/10.1016/j.spc.2020.10.002. [28] A. V. ROTH, A. A. TSAY, M. E. PULLMAN, and J. V. GRAY, “UNRAVELING THE FOOD SUPPLY CHAIN: STRATEGIC INSIGHTS FROM CHINA AND THE 2007 RECALLS,” The Journal of Supply Chain Management, vol. 44, no. 1, pp. 22–39, Jan. 2008, doi: https://doi.org/10.1111/j.1745-493x.2008.00043.x. [29] C. Brooks, L. Parr, J. M. Smith, D. Buchanan, D. Snioch, and E. Hebishy, “A Review of Food Fraud and Food Authenticity across the Food Supply Chain, with an Examination of the Impact of the COVID-19 Pandemic and Brexit on Food Industry,” Food Control, vol. 130, p. 108171, Apr. 2021, doi: https://doi.org/10.1016/j.foodcont.2021.108171. [30] T. T. Assefa, M. P. M. Meuwissen, and A. G. J. M. Oude Lansink, “Price risk perceptions and management strategies in selected European food supply chains: An exploratory approach,” NJAS - Wageningen Journal of Life Sciences, vol. 80, pp. 15–26, Mar. 2017, doi: https://doi.org/10.1016/j.njas.2016.11.002. [31] P. M. Wognum, H. Bremmers, J. H. Trienekens, J. G. A. J. van der Vorst, and J. M. Bloemhof, “Systems for sustainability and transparency of food supply chains – Current status and challenges,” Advanced Engineering Informatics, vol. 25, no. 1, pp. 65–76, Jan. 2011, doi: https://doi.org/10.1016/j.aei.2010.06.001. [32] H. F. Ahmed, A. Hosseinianfar, D. Sarwar, and R. Khandan, “Supply Chain Complexity and Its Impact on Knowledge Transfer: Incorporating Sustainable Supply Chain Practices in Food Supply Chain Networks,” Logistics, vol. 8, no. 1, pp. 5–5, Jan. 2024, doi: https://doi.org/10.3390/logistics8010005. [33] L. Lu and J. Navas, “Advertising and quality improving strategies in a supply chain when facing potential crises,” European Journal of Operational Research, vol. 288, no. 3, pp. 839–851, Feb. 2021, doi: https://doi.org/10.1016/j.ejor.2020.06.026. [34] A. Martikainen, P. Niemi, and P. Pekkanen, “Developing a service offering for a logistical service provider—Case of local food supply chain,” International Journal of Production Economics, vol. 157, pp. 318–326, Nov. 2014, doi: https://doi.org/10.1016/j.ijpe.2013.05.026. [35] R. Krishnan, P. Yen, R. Agarwal, K. Arshinder, and C. Bajada, “Collaborative Innovation and Sustainability in the Food Supply chain- Evidence from Farmer Producer Organisations,” Resources, Conservation and Recycling, vol. 168, p. 105253, Nov. 2020, doi: https://doi.org/10.1016/j.resconrec.2020.105253. [36] H. Taherdoost and M. Madanchian, “Empirical Modeling of Customer Satisfaction for E-Services in Cross-Border E-Commerce,” Electronics, vol. 10, no. 13, p. 1547, Jun. 2021, doi: https://doi.org/10.3390/electronics10131547. [37] S. A. Devi, A. Felix, S. Narayanamoorthy, A. Ahmadian, D. Balaenu, and D. Kang, “An intuitionistic fuzzy decision support system for COVID-19 lockdown relaxation protocols in India,” Computers and Electrical Engineering, vol. 102, p. 108166, Sep. 2022, doi: https://doi.org/10.1016/j.compeleceng.2022.108166. [38] Y. Liang, “HTML5-based Graphic Image Processing and Collaborative Drawing Technology,” Systems and soft computing, pp. 200076–200076, Jan. 2024, doi: https://doi.org/10.1016/j.sasc.2024.200076. [39] M. B. Doumi, J. Serrano-Guerrero, F. Chiclana, F. P. Romero, and J. A. Olivas, “A picture fuzzy set multi criteria decision-making approach to customize hospital recommendations based on patient feedback,” Applied soft computing, vol. 153, pp. 111331–111331, Mar. 2024, doi: https://doi.org/10.1016/j.asoc.2024.111331. [40] B. Kizielewicz and L. Dobryakova, “Stochastic Triangular Fuzzy Number (S-TFN) Normalization: A New Approach for Nonmonotonic Normalization,” Procedia Computer Science, vol. 225, pp. 4901–4911, Jan. 2023, doi: https://doi.org/10.1016/j.procs.2023.10.490. [41] M. Z. Anam, A. B. M. M. Bari, S. K. Paul, S. M. Ali, and G. Kabir, “Modelling the drivers of solar energy development in an emerging economy: Implications for sustainable development goals,” Resources, Conservation & Recycling Advances, vol. 13, p. 200068, May 2022, doi: https://doi.org/10.1016/j.rcradv.2022.200068. [42] M. F. B. Alam, S. R. Tushar, S. M. Zaman, E. D. R. S. Gonzalez, A. B. M. M. Bari, and C. L. Karmaker, “Analysis of the drivers of Agriculture 4.0 implementation in the emerging economies: Implications towards sustainability and food security,” Green Technologies and Sustainability, vol. 1, no. 2, p. 100021, May 2023, doi: https://doi.org/10.1016/j.grets.2023.100021. [43] A. Choudhury, A. Behl, P. A. Sheorey, and A. Pal, “Digital supply chain to unlock new agility: a TISM approach,” Benchmarking: An International Journal, vol. ahead-of-print, no. ahead-of-print, Jan. 2021, doi: https://doi.org/10.1108/bij-08-2020-0461. [44] D. Mathivathanan, K. Mathiyazhagan, N. P. Rana, S. Khorana, and Y. K. Dwivedi, “Barriers to the adoption of blockchain technology in business supply chains: a total interpretive structural modelling (TISM) approach,” International Journal of Production Research, vol. 59, no. 11, pp. 1–22, Jan. 2021, doi: https://doi.org/10.1080/00207543.2020.1868597. [45] P. Zhang, S. Ma, Y. Zhao, J. Ling, and Y. Sun, “Analysing Influencing Factors and Correlation Paths of Learning Burnout among Secondary Vocational Students in the context of Social Media: An Integrated ISM–MICMAC Approach,” Heliyon (Londen), pp. e28696–e28696, Mar. 2024, doi: https://doi.org/10.1016/j.heliyon.2024.e28696. [46] L. G. Bobadilla, J. A. C. Trigoso, D. Pilar, P. A. R. Trujillo, and M. Oliva, “Structural analysis of the future of the coffee industry in the Amazonas region using a MICMAC approach,” Heliyon, vol. 10, no. 7, pp. e27827–e27827, Apr. 2024, doi: https://doi.org/10.1016/j.heliyon.2024.e27827. [47] S. B. Nasir, T. Ahmed, C. L. Karmaker, S. M. Ali, S. K. Paul, and A. Majumdar, “Supply chain viability in the context of COVID-19 pandemic in small and medium-sized enterprises: implications for sustainable development goals,” Journal of Enterprise Information Management, vol. ahead-of-print, no. ahead-of-print, Sep. 2021, doi: https://doi.org/10.1108/jeim-02-2021-0091. | ||
آمار تعداد مشاهده مقاله: 82 تعداد دریافت فایل اصل مقاله: 13 |