تعداد نشریات | 38 |
تعداد شمارهها | 1,254 |
تعداد مقالات | 9,087 |
تعداد مشاهده مقاله | 8,210,578 |
تعداد دریافت فایل اصل مقاله | 4,970,804 |
بهینهسازی چند هدفی دماغه اجایو یک پرتابه ازمنظر ضریب پسا و سطح مقطع راداری با استفاده از الگوریتم NSGA-II | ||
رادار | ||
مقاله 5، دوره 7، شماره 1 - شماره پیاپی 21، شهریور 1398، صفحه 53-63 اصل مقاله (1.95 M) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
سید مرتضی جوادپور* 1؛ بهمن رحمتی2؛ احسان خراسانی نژاد3؛ رضا مریمی4 | ||
1استادیار مهندسی مکانیک، مجتمع آموزش عالی گناباد | ||
2دکتری مهندسی برق، دانشگاه شاهد | ||
3دانشگاه آزاد اسلامی واحد بهبهان | ||
4دکتری مهندسی مکانیک، دانشگاه یزد | ||
تاریخ دریافت: 29 بهمن 1397، تاریخ بازنگری: 02 خرداد 1398، تاریخ پذیرش: 15 مرداد 1398 | ||
چکیده | ||
طراحان سعی میکنند که دماغه پرتابه از ضریب پسا کمتری برخوردار باشد اما بسیاری از تغییرات هندسه که باعث کاهش ضریب پسا میشوند میتوانند باعث آشکارسازی سریعتر پرتابه گردد. نویسندگان بر آن شدند تا با طراحی بهینه دماغه، ضمن ثابت نگهداشتن طول کلی پرتابهاین مشکل را حداقل نمایند. در این تحقیق دماغه اجایو یک پرتابه با استفاده از الگوریتم ژنتیک چند هدفی بهینه شده است. پرتابه مورد نظر در ماخ 2 و فرکانس 4 تا 6 گیگاهرتز مورد بررسی قرار گرفت. توابع هدف مورد بررسی، توابع سطح مقطع راداری (RSC) و ضریب پسا (CD) میباشد. در این کار ابتدا تابع ضریب پسای پرتابه با استفاده از نرمافزار فلوئنت محاسبه و با نتایج عددی و تجربی تونل باد مقایسه شده است، همچنین تابع سطح مقطع راداری با استفاده از کد تجاری HFSS محاسبه گردیده است. در نهایت با اجرای الگوریتم بهینهسازی چند هدفی، هر دو تابع هدف بهطور همزمان بهینه شدهاند و منحنی جبهه پرتو برای آنها بهدست آمد. این منحنی نشاندهنده بهترین نقاط طراحی برای توابع هدف میباشد.نتایج نشان میدهد اختلاف ضریب پسا و سطح مقطع راداری برای این مدل پیشنهادی نسبت به مدل اولیه به ترتیب 47% و 14% میباشد. | ||
کلیدواژهها | ||
دینامیک سیالات عددی؛ ضریب پسا؛ NSGA-II؛ سطح مقطع راداری؛ دماغه اجایو | ||
عنوان مقاله [English] | ||
Optimization of Radar Cross Section and Drag coefficient of Ogive Nose Using the NSGA-II Algorithm | ||
نویسندگان [English] | ||
ُS. M. Javadpour1؛ B. Rahmati2؛ e. khorasani nezhad3؛ R. maryami4 | ||
1University of Gonabad | ||
2University of shahed | ||
3azad University | ||
4yazd university | ||
چکیده [English] | ||
Designers try to reduce missiles’ drag coefficients, but many of the geometrical changes that reduce the drag coefficient can increase the radar cross section of the missile. So, authors decided to solve this problem by missile optimization. In this study, missile Ogive nose is optimized using multi-objective genetic algorithm while the length of missile is kept constant. Objective functions are drag coefficient and radar cross section (RCS). Ogive nose was tested in mach number of 2.01 and radar systems were designed to operate at high frequencies between 4-6 GHz. The drag coefficient was calculated by CFD code and was compared with experimental results. Then, radar cross section was calculated with the commercial HFSS program. Finally, objective functions were optimized using non-dominate sorting genetic algorithm (NSGA-II) and the objectives were both minimized to establish the Pareto front. Pareto front shows the best possible design points for the objective functions. Compared with the initial model, the optimum model achieves a decrease of 47% and 14% in the drag coefficient and the radar cross section respectively. | ||
کلیدواژهها [English] | ||
CFD, Drag Coefficient, NSGA-II, RCS, Ogive | ||
مراجع | ||
[1] S. Mikki and A. A. Kishk, “Quantum particle swarm optimization for electromagnetics,” arXiv 16 preprint physics/0702214, 2006.## [2] F. Knott, F. Shaeffer, and M. T. Tuley, “Radar Cross Section, 2nd edition,” Artech House, Norwood, M. A. Puckett, E. Allen, 1959, Guided missile engineering, McGraw-Hill, New York, 1993.## [3] H. Huang Jiangtao, G. Gao Zhenghong, Z. Ke, and B. Junqiang, “Robust design of supercritical wing aerodynamic optimization considering fuselage interfering,” Chinese Journal of Aeronautics, vol. 23, pp. 523-528, 2010.## [4] U. Selvakumar and P. R. Mukesh, “Aerodynamic shape optimization using computer mapping of natural evolution process,” 2nd International Conferenceon Computer Engineering and Technology, 2010.## [5] D. W. Zingg, M. Nemec, and T. H. Pulliam, “A comparative evaluation of genetic and gradient-based algorithms applied to aerodynamic optimization,” Shape design in aerodynamics, pp. 103-126, 2008.## [6] A. Shahrokhi and A. Jahangirian, “An efficient aerodynamic optimization method using a genetic algorithm and a surrogate model,” 16th Australasian Fluid Mechanics Conference Crown Plaza, Gold Coast, Australia, 2-7 December, 2007.## [7] H. Nobahari, S. Y. Nabavi, and S. H. Pourtakdoust, “Aerodynamic shape optimization of unguided projectiles using and colony optimization and genetic algorithm,” 25th International Congeres of The Aeronautical Science, 2006.## [8] Q. Qasim Zeeshan, D. Yun-feng, A. Kamran, A. Rafique, and K. Nisar, “Stealth considerations for aerodynamic configurations design of missiles,” Caddm, vol. 19, no.1, 2009.## [9] N. F. Foster and G. S. Dulikravich, “Three dimensional aerodynamic shape optimization using genetic and gradient search algorithm, Journal of Spaceraft and Rockets,” vol. 34, no.1, 1997.## [10] Fedaravičius, Kilikevičius, and A. Survila “Optimization of the rocket’s nose and nozzle design parameters in respect to Its aerodynamic characteristics,” Journal of Vibo engineering, vol. 14, Issue 4, 2012.## [11] N. Vidanovic, B. Rasuo, Damljanovic, D. Vukovic, and D. Ćurcic, “Validation of The CFD code used for determination of aerodynamic characteristics of nonstandarad agard-B calibration model,” Thermal Science, First Issue 00, pp. 104-116, 2013.## [12] B. Kaleeswaran, S. Ranjith, S. Kumar, and S. J. Imro, “An Aerodynamic Optimization of supersonic flow over the nose section of missiles,” International, Journal of Engineering Research & Technology, vol. 2, no. 4, 2013.## [13] D. Hamunpeyma and A. Alighanbari, “Non-uniform and Partial Coating of an Aircraft for Achievement of the Minimum Radar Cross Section with the Minimum Weight of Absorbent,” Journal of Radar, vol. 5, no. 2, pp. 27-40, 2017.## [14] H. Lee, “Investigation of the effects of target feature variation on ballistic missile RCS,” Thesis of Master of Science, Department of The Air Force AIR University, 2006.## [15] G. Cakir and L Sevg, “Radar Cross-Section (RCS) Analysis of High Frequency Surface Wave Radar Targets,” Turk. Jou. Elec. Eng. & Comp. sci., vol. 18, no.3, 2010.## [16] M. B. Perotoni and L. A. Andrade, “Numerical Evaluation of An Air to-Air Missile Radar Cross Section Signature at X-band,” J. Aerospace. Technol., vol. 3, no.3, pp. 287-294, 2011.## [17] A Greenwood, “Electromagnetic Code Consortum Benchmarks,” Air Force Research Laboratory, AFRL-DE-TR-2001-1086, 2001.## [18] J. H. Holland, “Adaptation in Natural and Artificial Systems,” The University of Michigan Press, Ann Arbor, 1975.## [19] E. Khorasani Nejad and S. M. Javadpour, “Turboshaft engine performance optimization using multi-objective Genetic algorithm,” 7th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, pp. 2083-2088, 2010.## [20] C. A. Coello and A. D. Christiansen, “Multi objective optimization of trusses using genetic algorithm,” Comput., Structures 75, pp. 647-660, 2000.## [21] A. OsyezkaMulticriteria, “Optimization for engineering design,” J. S. Gero (ED), Design Optimization, Academic Press, New York, pp. 193-227, 1985.## [22] S. Abdolahi and M. Ebrahimi, “A numerical investigation of deployable drag surfaces used for recovery system,” Computational methods and experimental measurement XV, WIT Press, pp. 193-204, 2011.## | ||
آمار تعداد مشاهده مقاله: 1,056 تعداد دریافت فایل اصل مقاله: 380 |