تعداد نشریات | 38 |
تعداد شمارهها | 1,240 |
تعداد مقالات | 8,994 |
تعداد مشاهده مقاله | 7,845,271 |
تعداد دریافت فایل اصل مقاله | 4,706,809 |
روشی مبتنی بر مدل امنیتی برای ارزیابی پویا از خطر حملات چندمرحلهای شبکههای کامپیوتری | ||
پدافند الکترونیکی و سایبری | ||
مقاله 13، دوره 9، شماره 1 - شماره پیاپی 33، اردیبهشت 1400، صفحه 157-173 اصل مقاله (1.51 M) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسنده | ||
مرجان کرامتی* | ||
عضو هیات علمی گروه علوم کامپیوتر دانشگاه سمنان | ||
تاریخ دریافت: 17 مرداد 1399، تاریخ بازنگری: 29 شهریور 1399، تاریخ پذیرش: 05 آبان 1399 | ||
چکیده | ||
با گسترش روزافزون آسیبپذیریها در شبکههای کامپیوتری وابستگی ابعاد مختلف زندگی بشر به شبکه، امنسازی شبکهها در برابر حملات ضروری است. در این راستا مقاومسازی کمهزینه بهدلیل محدودیت بودجه در زمره چالشهای مورد توجه مدیران امنیتی است. برآوردهسازی این هدف، با اولویتبندی آسیبپذیریها از نظر میزان خطر و انتخاب آسیبپذیریهای پر خطر برای حذف ممکن میشود. در اینباره سامانه امتیازدهی به آسیبپذیری عام یا CVSS برای تعیین میزان خطر ناشی از بهرهبرداری شدن از آسیبپذیریها معرفی شده است و استفاده فراوانی دارد. اما باید دقت داشت که در CVSS، شدت آسیبپذیری تنها بر اساس خصوصیات ذاتی تعیین میشود و عوامل زمانی مثل احتمال معرفی ابزارهای بهرهبرداری از آسیبپذیری نادیده گرفته میشوند. بنابراین، CVSS نمیتواند ارزیابی پویایی از خطر داشته باشد. همچنین،CVSS متمایزسازی کارایی از آسیبپذیریها از نقطهنظر خطر وارده به سامانه را انجام نمیدهد بدین دلیل که، تنها تعداد محدودی عدد برای امتیازدهی به انبوهی از آسیبپذیریها موجود است. بهعلاوه CVSS، ارزیابی خطر را فقط برای تک آسیبپذیریها انجام میدهد و ارزیابی عمده حملات که حملات چندمرحلهای هستند توسط CVSS ممکن نیست. در این مقاله، بهمنظور بهبود عملکرد CVSS و تعدادی از سامانههای ارزیابی خطر موجود، سامانه برای ارزیابی پویای خطر حملات چندمرحلهای با در نظر گرفتن عوامل زمانی ارائه شده است. توسعه سامانه معرفی شده بر اساس مدل امنیتی و تعریف معیارهای امنیتی مبتنی بر مدل امنیتی، ایده اصلی مقاله بوده که ارزیابی خطر حملات چندمرحلهای را توسط سامانه پیشنهادی ممکن ساخته است. همچنین، قابلیت ارزیابی خطر حملات چند مرحلهای روز صفر را میتوان بهعنوان یک ویژگی منحصربهفرد برای سامانه پیشنهادی معرفی کرد که سامانههای امتیازدهی فعلی قادر به انجام آن نیستند. در CVSS، تأثیر مخرب 5/35 درصد از آسیبپذیریها روی سه پارامتر امنیتی محرمانگی، یکپارچکی و دسترسیپذیری یکسان گزارش میشود. در صورتی که در سامانه امتیازدهی پیشنهادی، با در نظر گرفتن اولویت نسبی بین سه پارامتر امنیتی، مجزاسازی درصد مذکور از آسیبپذیریها از نقطهنظر میزان آسیب به سامانه ممکن میشود. همچنین ماهیت پیوسته واحد ارزیابی احتمال پویای سامانه پیشنهادی در مقابل ماهیت گسسته تابع محاسبه احتمال CVSS، گوناگونی امتیازات را گسترش میدهد. | ||
کلیدواژهها | ||
ارزیابی خطر؛ آسیبپذیری؛ حملات چندمرحلهای؛ حملات روز صفر؛ گراف حمله؛ سامانه امتیازدهی به آسیبپذیری عام (CVSS)؛ معیار امنیتی | ||
عنوان مقاله [English] | ||
A Security Model Based Approach for Dynamic Risk Assessment of Multi-Step Attacks in Computer Networks | ||
نویسندگان [English] | ||
M. Keramati | ||
Faculty Member of Semann University | ||
چکیده [English] | ||
Multi-facet dependency of human life on computer networks and its widespread vulnerability has made network robustness a necessity. With cost as a limiting factor, network robustness is considered as a great challenge for network administrators. This goal would be achievable by prioritizing the vulnerabilities based on their risk and choosing the most hazardous ones for elimination. Nowadays, CVSS is being used as the most widely used vulnerability scoring system. In CVSS, vulnerability ranking is based on its intrinsic features while temporal features such as the probability of developing exploitation tools, are ignored. So, dynamic risk evaluation is not possible with CVSS and it is incapable of performing effective vulnerability discretion. This is because, only limited number of vulnerabilities are available for prioritization of infinite number of vulnerabilities. In addition, CVSS only ranks single step attacks whilst a wide variety of attacks are multi-step attacks. In this paper, a security system is proposed that is an improvement over CVSS and some other existing vulnerability scoring systems. It performs dynamic risk evaluation of multi-step attacks by considering vulnerabilities' temporal features. As the introduced model is developed based on security metrics of the security model, security evaluation of multi-step attacks is now possible by CVSS. Also, the capability of risk evaluation of zero-day attacks is one unique feature of the proposed system which cannot be accomplished by the present vulnerability scoring systems. In CVSS, the impact of exploiting 35.5% of vulnerabilities on confidentiality, integrity and availability are scored the same. But, in the proposed system, by considering the relative priority of the three mentioned security parameters, vulnerability discrimination of risk score of the mentioned percentage of vulnerabilities may be possible. On the other hand, the continuity of the probability assessment function of the proposed method in comparison to the discrete one in CVSS, improves the score diversity. | ||
کلیدواژهها [English] | ||
Risk Assessment, Multi-Step Attacks, Zero-Day Attacks, Attack Graph, Common Vulnerability Scoring System(CVSS), Security Metric | ||
مراجع | ||
[1] S. Abraham and S. Nair, “A Predictive Framnework for Cyber Security Analytics Using Attack Graphs,” International Journal of Computer Networks & Communications (IJCNC), vol. 7, no. 1, pp. 1-17, 2015.## [2] C. Frühwirth and T. Männistö, “Improving CVSS-based vulnerability prioritization and response with context information,” Proceeedings of International Workshop on Security Measurement and Metrics (MetriSec), pp. 535-544, 2009.## [3] H. Ghani, J. Luna, and N. Suri, “Quantitative assessment of software vulnerabilities based on economic-driven security metrics,” International Conference on Risks and Security of Internet and Systems (CRiSIS), pp. 1-8, 2013.## [4] S. H. Houmb and V. N. L. Franqueira, “Estimating ToE Risk Level Using CVSS,” International Conference on Availability, Reliability and Security, pp. 718-725, 2009.## [5] G. Spanos, A. Sioziou, and L. Angelis, “WIVSS: a new methodology for scoring information systems vulnerabilities,” Panhellenic Conference on Informatics, pp. 83-90, 2013.## [6] MITRE CVE, “Common Vulnerabilities an Scoring,” https://cve.mitre.org/, 2018.## [7] OSVBD, “Open Sourced Vulnerability Database,” http://osvdb.org/, 2018.## [8] Nessus, “Vulnerability Assessment Solution,” http://www.tenable.com/products/nessus-vulnerability-scanner, 2018.## [9] L. Gallon, “Vulnerability discrimination using cvss framework,” In New Technologies, Mobility and Security (NTMS), 4th IFIP International Conference, pp. 1 –6, 2010.## [10] N. Idika and B. Bhargava, “Extending Attack Graph-based Security Metrics and Aggregating Their Application,” IEEE Transactions on Dependable and Secure Computing, vol. 9, no.1, pp. 1-12, 2010.## [11] T. Hamid, C. Maple, and P. Sant, “Methodologies to Develop Quantitative Risk Evaluation Metrics,” International Journal of Computer Applications, vol. 48, no. 14, pp. 17-24, 2012.## [12] L. Xie, X. Zhang, and J. Zhang, “Network Security Risk Assessment Based on Attack Graph,” Journal of Computers, vol. 8, no. 9, pp. 2339-2347, 2013.## [13] J. Pamula, S. Jajodia, P. Ammann, and V. Swarup, “A Weakest-Adversary Security Metric for Network Configuration Security Analysis,” Proc. Second ACM Workshop Quality of Protection, pp. 31-38, 2006.## [14] IBM, “X-Force frequently asked questions,” http://www-35.ibm.com/services/us/iss/xforce/faqs.html, 2018.## [15] Qualys, “Severities Knowledge Base,” http://www.qualys.com/research/knowledge/severity/, 2018.## [16] CVSS, “Common Vulnerability Scoring System,” https://www.first.org/cvss, 2018.## [17] CVE, “Common Vulnerabilities and Exposures,” https://cve.mitre.org, 2018.## [18] K. Scarfone and P. Mell, “An Analysis of CVSS Version 2 Vulnerability Scoring,” Proceeding of 3rd International Symposium on Empirical Software Engineering and Measurement, pp. 516- 525, 2009.## [19] M. Keramati, “Attack Graph Based system for Risk Assessment of Multi-Step Attacks,” Proceedings of the 2nd International Conference on Combinatorics, Cryptography and Computation (I4C2017), pp. 171-182, 2017.## [20] Mozilla, “Mozilla Foundation Security Advisories,” "http://www.mozilla.org/security/announce/, 2018.## [21] Q. Liu and Y. Zhang, “VRSS: A new system for rating and scoring vulnerabilities,” Computer Communications, vol. 34, no. 3, pp. 264-273, 2011.## [22] M. Albanese, S. Jajodia, A. Singhal, and L. Wang, “An Efficient Framework for Evaluating the Risk of Zero-Day Vulnerabilities,” In E-Business and Telecommunications, Springer, pp. 322-340, 2014.## [23] W. Nzoukou, L. Wang, S. Jajodia, and A. Singhal, “A unified framework for measuring a network's mean time-to-compromise,” Proc. 32nd Int'l. Symp. on Reliable Distributed Systems (SRDS), pp. 215-224, 2013.## [24] NVD, “National Vulnerability DataBase,” https://nvd.nist.gov, 2018.## [25] F. Chen, D. Liu,Y. Zhang, and J. Su, “A Scalable Approach to Analyzing Network Security using Compact Attack Graphs,” Journal of Networks, vol. 5, no. 5, pp. 543-550, 2010.## [26] H. Joh and Y. K. Malaiya, “Defining and Assessing Quantitative Security Risk Measures Using Vulnerability Lifecycle and CVSS Metrics,” Proc. Int. Conference on Security and Management, pp. 10-16, 2011.## [27] S. Frei, S. May, U. Fiedler and B. Plattner, “Large-scale vulnerability analysis,” LSAD ’06: Proceedings of the 2006 Sigcomm workshop on Large-scale attack defense, pp. 131–138, 2006.## [28] E. Triantaphyllou and K. Baig, “The Impact of Aggregating Benefit and Cost Criteria in Four MCDA Methods,” IEEE Transactions on Engineering Management, vol. 52, no. 2, pp. 213-226, 2005.## [29] N. Ghosh and S. K. Ghosh, “An Approach for Security Assessment of Network Configurations Using Attack Graph,” 1st International Conference on Networks and Communications, IEEE, pp. 283-288, 2009.## [30] S. Abraham and S. Nair, “Cyber Security Analytics: A Stochastic Model for Security Quantification Using Absorbing Markov Chains,” Journal of Communications, vol. 9, no. 12, pp. 899-907, 2014.## [31] Y. Ru et al., “Risk assessment of cyber attacks in ECPS based on attack tree and AHP,” 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), Changsha, pp. 465-470, 2016.## [32] S. C. Liu and Y. Liu, “Network security risk assessment method based on HMM and attack graph model,” 2016 17th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD), Shanghai, pp. 517-522, 2016.## [33] A. V. Sathanur and D. J. Haglin, “A novel centrality measure for network-wide cyber vulnerability assessment,” 2016 IEEE Symposium on Technologies for Homeland Security (HST), Waltham, MA, pp. 1-5, 2016.## [34] E. Weintraub, “Evaluating Damage Potential in Security Risk Scoring Models,” International Journal of Advanced Computer Science and Applications, vol. 7, no. 5, pp. 345-353, 2016.## [35] A. Younis, Y. K. Malaiya, and I. Ray, “Evaluating CVSS Base Score Using Vulnerability Rewards Programs,” In: Hoepman J. H., Katzenbeisser S. (eds) ICT Systems Security and Privacy Protection, SEC 2016, IFIP Advances in Information and Communication Technology, Springer, Cham, vol. 471, pp. 62-75, 2016.## [36] P. Johnson, A. Vernotte, D. Gorton, M. Ekstedt, and L. Robert, “Quantitative Information Security Risk Estimation Using Probabilistic Attack Graphs,” (eds) Risk Assessment and Risk-Driven Quality Assurance, RISK 2016, Lecture Notes in Computer Science, vol 10224, Springer, Cham, pp. 37-50, 2017.## [37] I. Kotenko and A. Chechulin, “Fast Network Attack Modeling and Security Evaluation based on Attack Graphs,” Journal of Cyber Security and Mobility, vol. 3, pp. 27-46, 2014.## [38] J. C. Acosta, E. Padilla, and J. Homer, “Augmenting attack graphs to represent data link and network layer vulnerabilities,” MILCOM 2016 - 2016 IEEE Military Communications Conference, Baltimore, MD, pp. 1010-1015, 2016.## [39] W. Zhou, H. Zhang, and Li. Q.-M., “A network risk assessment method based on attack-defense graph model,” Journal of Computers (Taiwan), vol. 28, pp. 105-118, 2017.## [40] M. Keramati, “An Attack Graph Based Method for Predictive Risk Evaluation of Zero-Day Attacks,” IJICTR, vol. 9, no. 3, pp. 7-16, 2017.## [41] M. Keramati, “Dynamic Risk Assessment System for the Vulnerability Scoring,” IJICTR., vol. 9, no.4, pp. 57-68, 2017.## [42] V. Hosseinnezhad and A. Pourhaji Kazem, “Bayesian Networks Based Trust Model in Social Networks,” Journal of Electronical & Cyber Defence, vol. 6 , no 4, pp. 29-38, 2018.## [43] K. Shoushian, A. J. Rashidi, and M. Dehghani, “Modeling of cyber-attacks obfuscation based on the attack analogous to the to the technique of insertion attacks,” Journal of Electronical & Cyber Defence, vol. 7, no. 4, pp. 59-74, 2020. (In Persian)## [44] W. Wang, F. Shi, M. Zhang, C. Xu, and J. Zheng, “A Vulnerability Risk Assessment Method Based on Heterogeneous Information Network,” In IEEE Access, vol. 8, pp. 148315-148330, 2020. doi: 10.1109/ACCESS.2020.3015551.## [45] A. Ur-Rehman, I. Gondal, J. Kamruzzaman, et al., “Vulnerability Modelling for Hybrid Industrial Control System Networks,” J. Grid Computing, 2020. https://doi.org/10.1007/s10723-020-09528-w## | ||
آمار تعداد مشاهده مقاله: 881 تعداد دریافت فایل اصل مقاله: 443 |