تعداد نشریات | 38 |
تعداد شمارهها | 1,240 |
تعداد مقالات | 8,994 |
تعداد مشاهده مقاله | 7,844,832 |
تعداد دریافت فایل اصل مقاله | 4,706,458 |
الگوریتم زمانبندی کار مبتنی بر امنیت با استفاده از تکنیک بهینهسازی ازدحام ذرات و یادگیری انطباقی چندگانه | ||
پدافند الکترونیکی و سایبری | ||
دوره 9، شماره 2 - شماره پیاپی 34، تیر 1400، صفحه 159-178 اصل مقاله (2.14 M) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
نجمه منصوری* 1؛ بهنام محمدحسنی زاده2؛ ریحانه غفاری3 | ||
1بخش علوم کامپیوتر، دانشگاه شهید باهنر کرمان، کرمان، ایران | ||
2گروه علوم کامپیوتر، دانشکده ریاضی و رایانه، دانشگاه شهیدباهنر کرمان، کرمان، ایران | ||
3گروه علوم کامپیوتر، دانشکده ریاضی و رایانه، دانشکاه شهید باهنر کرمان، کرمان، ایران | ||
تاریخ دریافت: 12 مهر 1399، تاریخ بازنگری: 03 آذر 1399، تاریخ پذیرش: 22 دی 1399 | ||
چکیده | ||
امروزه بسیاری از مسائل علمی پیچیده نیاز به قدرت محاسباتی و فضای ذخیرهسازی بالایی دارند. رایانش ابری مدلی است برای دسترسی آسان و بنا به سفارشِ منابع رایانشی مانند فضای ذخیرهسازی با کمترین نیاز به دخالت فراهمکننده خدمات. ابرها به دلیل مزایای بسیار مورد استقبال قرار گرفتند ولی با توجه به برونسپاری، مسائل مربوط به امنیت و حفظ حریم خصوصی به عنوان مهمترین مشکلات این حوزه مطرح میشوند. از طرف دیگر، زمانبندی کارها یک مسئله اساسی در سیستمهای توزیع شدهای چون رایانش ابری است. زیرا در یک زمان واحد، کارهای متعددی برای اجرا شدن وجود دارد که به منابع متفاوتی احتیاج دارند درحالیکه منابع محدود هستند. از اینرو باید به طور هوشمندانه کارها زمانبندی شوند تا عملکرد سیستم و سوددهی فراهمکننده حداکثر گردد. برای حل این مشکل، روشهای مختلف مانند الگوریتمهای مبتنی بر گرادیان برای مسائل مستمر و تک مدلی معمول هستند. اما اگر برای زمانبندی در رایانش ابری استفاده شوند، به دلیل فضای جستجوی بزرگ و طبیعت پیچیده مسائل، این الگوریتمها ممکن است راهحل رضایتبخشی ارائه ندهند. روشهای فرااکتشافی کارآمد میتوانند با این مشکل مقابله کرده و راهحل نزدیک به بهینه در کوتاهترین دوره زمانی را پیدا کنند. در نتیجه در این مقاله، الگوریتم زمانبندی برای بهبود امنیت با استفاده الگوریتم بهینهسازی ازدحام ذرات بهبودیافته ارائه شده است. الگوریتم بهبودیافته با استفاده از یادگیری انطباقی منجر به تنوع در جمعیت میشود و لذا تعادلی بین عملیات اکتشاف و بهرهبرداری به دست میآید. الگوریتم زمانبندی پیشنهادی همزمان پنج پارامتر (زمان بازگشت، بار، مصرف انرژی، هزینه و امنیت) را در حین توزیع کارها در نظر میگیرد تا در نهایت منجر به توزیع بار و کاهش مصرف انرژی میگردد. الگوریتم پیشنهادی با استفاده از شبیهساز کلودسیم پیادهسازی و با روشهای مربوطه (CJS, OTSS, GTSA, JSSS) مقایسه میشود. نتایج حاصل از شبیهسازی نشان میدهد که الگوریتم پیشنهادی با در نظر گرفتن ویژگیهای کارها و منابع، کارایی و اثربخشی قابلتوجهی در محیط رایانش ابری خصوصاً در بار کاری بالا دارد. | ||
کلیدواژهها | ||
رایانش ابری؛ الگوریتمهای فرااکتشافی؛ زمانبندی کار؛ امنیت | ||
عنوان مقاله [English] | ||
Security-aware Task Scheduling Algorithm based on Multi Adaptive Learning and PSO Technique | ||
نویسندگان [English] | ||
N. Mansouri1؛ B. Mohammad Hasani Zade2؛ R. Ghafari3 | ||
1Department of Computer Science, Shahid Bahonar University of Kerman, Kerman, Iran | ||
2Department of Computer Science, Shahid Bahonar University of Kerman, Kerman, Iran | ||
3Department of Computer Science, Shahid Bahonar University of Kerman, Kerman, Iran | ||
چکیده [English] | ||
Today, many scientific problems require high computational power and storage space. Cloud computing is a model for easy access to different resources such as storage space with minimal need for service provider interaction. The cloud environment has been used for many benefits, but security and privacy issues are important challenges due to outsourcing. On the other hand, task scheduling is a fundamental issue in distributed systems such as cloud computing. Because there are several tasks to be performed that require different resources while resources are limited. Therefore, cloud tasks must be intelligently scheduled so that system performance and provider profitability are maximized. To solve this challenge, various techniques such as gradient-based algorithms for continuous and single-model problems are common. In cloud computing, due to the large search space and complex nature, these algorithms may not provide a suitable solution. Efficient meta-heuristic techniques can deal with these problems and find near-optimal solutions in a reasonable time. In this paper, a security-based scheduling algorithm using an improved Particle Swarm Optimization algorithm is presented. The improved algorithm uses multi adaptive learning to provide diversity in a population. Therefore, a good balance between exploration and exploitation. The proposed task scheduling algorithm simultaneously considers five parameters (i.e., round trip time, load, energy consumption, cost, and security) to provide load balancing and reduce energy consumption. The proposed algorithm is implemented using the CloudSim simulator and compared with the relevant strategies (i.e., CJS, OTSS, GTSA, and JSSS). The simulation results show that the proposed algorithm, considering the characteristics of tasks and resources, has significant efficiency and effectiveness in the cloud environment, especially at high workloads. | ||
کلیدواژهها [English] | ||
Cloud computing, Meta- heuristic, Task scheduling, Security | ||
مراجع | ||
[1] N. Mansouri and M. M. Javidi, “A review of data replication based on meta-heuristics approach in cloud computing and data grid,” Soft Comput., vol. 24, pp. 14503-14530, 2020.## [2] M. Bansal and S. K. Malik, “A multi-faceted optimization scheduling framework based on the particle swarm optimization algorithm in cloud computing,” Sustainable Comput. Inf. Syst., 2020.## [3] P. Mell and T. Grance, “The NIST definition of cloud computing,” 2011.## [4] F. Jauro, H. Chiroma, A. Y. Gital, M. Almutairi, S. M. Abdulhamid, and J. H. Abawajy, “Deep learning architectures in emerging cloud computing architectures: Recent development, challenges and next research trend,” Appl. Soft Comput., vol. 96, 2020.## [5] N. Mansouri and M. M. Javidi, “A hybrid data replication strategy with fuzzy-based deletion for heterogeneous cloud data centers,” J. Supercomput., vol. 74, pp. 5349-5372, 2018.## [6] N. Mansouri, R. Ghafari, and B. Mohammad Hasani Zade, “Cloud computing simulators: A comprehensive review,” Simul. Modell. Pract. Theory, vol. 104, 2020.## [7] A. A. Zubair, S. B. A. Razak, M. A. Bin Ngadi, A. Ahmed, and S. H. H. Madni, “Convergence-based task scheduling techniques in cloud computing: A review,” In: International Conference of Reliable Information and Communication Technology, pp. 227–234, 2020.## [8] S. R. Pakize, S. M. Arefi nejad, “A new scheduling algorithm to reduce computation time in Hadoop environment,” Journal of Electronical & Cyber Defence, vol. 8, 2020. (In Persian)## [9] F. Xin and L. Zhang, “The review of task scheduling in cloud computing,” In: International Conference on Geo-informatics in Sustainable Ecosystem and Society, pp. 119–126, 2019.## [10] M. Mehravaran, M. R. Pajoohan, and F. Adibnia, “Secure and confidential workflow scheduling in hybrid cloud with improved particle swarm optimization algorithm,” Journal of Electronic and cyber defense, vol. 7, pp. 131-145, 2019. (In Persian)## [11] N. Mansouri, “Network and data location aware approach for simultaneous job scheduling and data replication in large-scale data grid environments,” Front. Comput. Sci., vol. 8, pp. 391-408, 2014.## [12] D. Ding, X. Fan, Y. Zhao, K. Kang, Q. Yin, and J. Zeng, “Q-learning based dynamic task scheduling for energy-efficient cloud computing,” Future Gener. Comput. Syst., vol. 108, pp. 361-371, 2020.## [13] S. Hammouti, B. Yagoubi, and S. A. Makhlouf, “Workflow security scheduling strategy in cloud computing,” In: International Symposium on Modelling and Implementation of Complex Systems, pp. 48-61, 2021.## [14] M. Kumar, S. C. Sharma, A. Goel, and S. P. Singh, “A comprehensive survey for scheduling techniques in cloud computing,” J. Netw. Comput. Appl., vol. 143, pp. 1-33, 2019.## [15] N. Subramanian and A. Jeyaraj, “Recent security challenges in cloud computing,” Comput. Electr. Eng., vol. 71, pp. 28-42, 2018.## [16] H. Tabrizchi and M. Kuchaki Rafsanjani, “A survey on security challenges in cloud computing: issues, threats, and solutions,” J. Supercomput., 2020.## [17] A. Bansal, A. K. Bairwa, and S. Hiranwal, “Security issues in cloud computing: A Review,” In: Proceedings of International Conference on Communication and Computational Technologies, pp. 515-521, 2021.## [18] H. Mouratidis, S. Shei, and A. Delaney, “A security requirements modelling language for cloud computing environments,” Softw. Syst. Model., vol. 19, pp. 271-295, 2020.## [19] D. A. B. Fernandes, L. F. B. Soares, J. V Gomes, M. M. Freire, and P. R. M. Inácio, “Security issues in cloud environments: a survey,” Int. J. Inf. Secur., vol. 13, pp. 113-170, 2014.## [20] S. Meng, W. Huang, X. Yin, M. R. Khosravi, Q. Li, S. Wan, and L. Qi, “Security-aware dynamic scheduling for real-time optimization in cloud-based industrial applications,” In: IEEE Transactions on Industrial Information, 2020.## [21] J. Zhou, J. Sun, P. Cong, Z. Liu, X. Zhou, T. Wei, and S. Hu, “Security-critical energy-aware task scheduling for heterogeneous real-time MPSoCs in IoT,” In: IEEE Transactions on Services Computing, 2020.## [22] R. Kumar and R. Goyal, “On cloud security requirements, threats, vulnerabilities and countermeasures: A survey,” Comput. Sci. Rev., vol. 33, pp. 1-48, 2019.## [23] N. Mansouri, G. Dastghaibyfard, and A. Horri, “A novel job scheduling algorithm for improving data grid’s performance,” In: 2011 International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, pp. 142-147, 2011.## [24] J. Gąsior and F. Seredyński, “Security-aware distributed job scheduling in cloud computing systems: A game-theoretic cellular automata-based approach,” In: International Conference on Computational Science, pp. 449-462, 2019.## [25] D. Fernández-Cerero, A. Jakóbik, D. Grzonka, J. Kołodziej, and A. Fernández-Montes, “Security supportive energy-aware scheduling and energy policies for cloud environments,” J. Parallel Distrib. Comput., vol. 119, pp. 191-202, 2018.## [26] H. Y. Shishido, J. C. Estrella, C. F. M. Toledo, and M. S. Arantes, “Genetic-based algorithms applied to a workflow scheduling algorithm with security and deadline constraints in clouds,” Comput. Electr. Eng., vol. 69, pp. 378-394, 2018.## [27] Z. Li, J. Ge, H. Yang, L. Huang, H. Hu, H. Hu, and B. Luo, “A security and cost aware scheduling algorithm for heterogeneous tasks of scientific workflow in clouds,” Future Gener. Comput. Syst., vol. 65, pp. 140-152, 2016.## [28] L. Ismail and H. Materwala, “EATSVM: Energy-aware task scheduling on cloud virtual machines,” Procedia Comput. Sci., vol. 135, pp. 248-258, 2018.## [29] Y. C. Lee and A. Y. Zomaya, “Energy efficient utilization of resources in cloud computing systems,” J. Supercomput., vol. 60, pp. 268-280, 2012.## [30] H. Zhang, “Research on job security scheduling strategy in cloud computing model,” In: International Conference on Intelligent Transportation, Big Data & Smart City, pp. 649-652, 2015.## [31] X. Liu and Y. Zhou, “A Self-adaptive layered sleep-based method for security dynamic scheduling in cloud storage,” In: 4th International Conference on Information Science and Control Engineering, pp. 99-103, 2017.## [32] Y. Lou, T. Zhang, J. Yan, K. Li, Y. Jiang, H. Wang, and J. Cheng, “Dynamic scheduling strategy for testing task in cloud computing,” In: Sixth International Conference on Computational Intelligence and Communication Networks, pp. 633-636, 2014.## [33] N. Mansouri and M. M. Javidi, “Cost-based job scheduling strategy in cloud computing environments,” Distrib. Parallel Databases, pp. 1-36, 2019.## [34] R. Achar, P. S. Thilagam, D. Shwetha, and H. Pooja, “Optimal scheduling of computational task in cloud using virtual machine tree,” In: Third International Conference on Emerging Applications of Information Technology, pp. 143-146, 2012.## [35] M. A. Kacimi, O. Guenounou, L. Brikh, F. Yahiaoui, and N. Hadid, “New mixed-coding PSO algorithm for a self-adaptive and automatic learning of Mamdani fuzzy rules,” Eng. Appl. Artif. Intell., vol. 89, 2020.## [36] A. R. Arunarani, D. Manjula, and V. Sugumaran, “Task scheduling techniques in cloud computing: A literature survey,” Future Gener. Comput. Syst., vol. 91, pp. 407-415, 2019.## [37] G. Xu, Q. Cui, X. Shi, H. Ge, Z. H. Zhan, H. P. Lee, Y. Liang, R. Tai, and C. Wu, “Particle swarm optimization based on dimensional learning strategy,” Swarm Evol. Comput., vol. 45, pp. 33-51, 2019.## [38] Y. Zhang, X. Liu, F. Bao, J. Chi, C. Zhang, and P. Liu, “Particle swarm optimization with adaptive learning strategy,” Knowledge-Based Syst., vol. 196, 2020.## [39] M. S. Sanaj and P. M. Joe Prathap, “Nature inspired chaotic squirrel search algorithm (CSSA) for multi objective task scheduling in an IAAS cloud computing atmosphere,” Eng. Sci. Technol. an Int. J., vol. 23, pp. 891-902, 2020.## [40] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing,” Future Gener. Comput. Syst., vol. 28, pp. 755-768, 2012.## [41] H. Liu, X.W. Zhang, and L.P. Tu, “A modified particle swarm optimization using adaptive strategy,” Expert Syst. Appl., vol. 152, 2020.## [42] I. B. Aydilek, “A hybrid firefly and particle swarm optimization algorithm for computationally expensive numerical problems,” Appl. Soft Comput., vol. 66, pp. 232-249, 2018.## [43] G. Wu, R. Mallipeddi, and P. N. Suganthan, “Problem definitions and evaluation criteria for the CEC 2017 competition on constrained real-parameter optimization,” National University of Defense Technology, Changsha, Hunan, PR China and Kyungpook National University, Daegu, South Korea and Nanyang Technological University, Singapore, Technical Report, 2017.## [44] A. W. Mohamed, A. A. Hadi, A. M. Fattouh, and K. M. Jambi, “LSHADE with semi-parameter adaptation hybrid with CMA-ES for solving CEC 2017 benchmark problems,” In: 2017 IEEE Congress on Evolutionary Computation (CEC), pp. 145-152, 2017.## [45] N. Mansouri, “Adaptive data replication strategy in cloud computing for performance improvement,” Front. Comput. Sci., vol. 10, pp. 925-935, 2016.## | ||
آمار تعداد مشاهده مقاله: 914 تعداد دریافت فایل اصل مقاله: 524 |