- “Malware Statistics & Trends Report| AV-TEST,” https://www.av-test.org/en/statistics/malware/ (Accessed Nov. 25, 2021.
- Afshar, A. Termechi, A. Golshan, A. Aghayan, H. R. Shahriari, and S. Soleimani, “Review of the Types of Strategies to Improve Security of Industrial Control Systems and Critical Infrastructure,” Passiv. Def. Q., vol. 9, no. 2, pp. 1–9, 2018.
- Kaushal, P. Swadas, and N. Prajapati, “Metamorphic Malware Detection Using Statistical Analysis,” Int. J. Soft Comput. Eng., vol. 2, no. 3, pp. 49–53, 2012.
- P. Nair, H. Jain, Y. K. Golecha, M. S. Gaur, and V. Laxmi, “Medusa: Metamorphic Malware Dynamic Analysis Usingsignature from API,” in Proc. of the 3rd Int. Conf. on Security of Information and Networks, pp. 263–269, 2010.
- S. Veerappan, P. L. K. Keong, Z. Tang, and F. Tan, “Taxonomy on Malware Evasion Countermeasures Techniques,” In IEEE World Forum on Internet of Things, WF-IoT- Proceedings, pp. 558–563, May 2018.
- Saxe and K. Berlin, “Deep Neural Network Based Malware Detection Using Two Dimensional Binary Program Features,” In Malicious and Unwanted Software (MALWARE), 10th Int. Conf. on, pp. 11–20, 2015.
- Ye, D. Wang, T. Li, D. Ye, and Q. Jiang, “An Intelligent PE-Malware Detection System Based on Association Mining,” J. Comput. Virol., vol. 4, no. 4, pp. 323–334, 2008.
- “PE Format - Win32 APPS | Microsoft Docs.” https://docs.microsoft.com/en-us/windows/win32/debug/pe-format (accessed Nov. 25, 2021).
- Gibert, C. Mateu, and J. Planes, “The Rise of Machine Learning for Detection and Classification of Malware: Research Developments, Trends and Challenges,” J. Netw. Comput. Appl., Mar. 2020.
- Belaoued and S. Mazouzi, “A Real-Time Pe-Malware Detection System Based on Chi-Square Test and Pe-File Features,” In IFIP Int. Conf. on Comput. Sci. and its App., pp. 416–425, 2015.
- -H. Lin, H.-K. Pao, and J.-W. Liao, “Efficient Dynamic Malware Analysis Using Virtual Time Control Mechanics,” Comput. Secur., vol. 73, no.? pp. 359–373, 2018.
- Afianian, S. Niksefat, B. Sadeghiyan, and D. Baptiste, “Malware Dynamic Analysis Evasion Techniques: A Survey,” CoRR, vol. abs/1811.0, 2018.
- L. C. Candás, V. Peláez, G. López, M. Á. Fernández, E. Alvarez, and G. Díaz, “An Automatic Data Mining Method to Detect Abnormal Human Behaviour Using Physical Activity Measurements,” Pervasive Mob. Comput., vol. 15, pp. 228–241, 2014.
- G. Schultz, E. Eskin, F. Zadok, and S. J. Stolfo, “Data Mining Methods for Detection of New Malicious Executables,” In Proc. 2001 IEEE Symp. on Security and Privacy, S&P 2001, pp. 38–49, 2000.
- Gao, G. Yin, Y. Dong, and L. Kou, “A Research on the Heuristic Signature Virus Detection Based on the PE Structure,” 2013.
- Alirezaei, “Behavioral Analysis of Malicious Code,” Kish Paradise Univ. of Tehran, Kish, 2011.
- H. Sung, J. Xu, P. Chavez, and S. Mukkamala, “Static Analyzer of Vicious Executables (Save),” In 20th Annual Comput. Security App. Conf., pp. 326–334, 2004.
- Weber, M. Schmid, M. Schatz, and D. Geyer, “A Toolkit for Detecting and Analyzing Malicious Software,” In 18th Annual Computer Security App. Conf., 2002. Proc., pp. 423–431, 2002.
- -Y. Wang, S.-J. Horng, M.-Y. Su, C.-H. Wu, P.-C. Wang, and W.-Z. Su, “A Surveillance Spyware Detection System Based on Data Mining Methods,” In 2006 IEEE Int. Conf. on Evolutionary Computation, pp. 3236–3241, 2006.
- [M. M. Masud, L. Khan, and B. Thuraisingham, “A Scalable Multi-Level Feature Extraction Technique to Detect Malicious Executables,” Inf. Syst. Front., vol. 10, no. 1, pp. 33–45, 2008.
- “Inc, V. Malware Sample.” https://virusshare.com/ (Accessed Nov. 25, 2019).
- “VirusSign | Malware Research & Data Center, Threat Intelligence, Free Downloads.” https://www.virussign.com/ (Accessed Nov. 25, 2021).
- “GitHub - ocatak/malware_api_class: Malware Dataset for Security Researchers, Data Scientists. Public Malware Dataset Generated by Cuckoo Sandbox Based on Windows OS API Calls Analysis for Cyber Security Researchers.” https://github.com/ocatak/malware_api_class (Accessed Nov. 25, 2021).
- S. Anderson and P. Roth, “Ember: An Open Dataset for Training Static Pe Malware Machine Learning Models,” arXiv Prepr. arXiv1804.04637, 2018.
- Dube, R. Raines, G. Peterson, K. Bauer, M. Grimaila, and S. Rogers, “Malware Target Recognition via Static Heuristics,” Comput. Secur., vol. 31, no. 1, pp. 137–147, 2012.
- Demme et al., “On the Feasibility of Online Malware Detection with Performance Counters,” ACM SIGARCH Comput. Archit. News, vol. 41, no. 3, pp. 559–570, 2013.
- S. Han, J. H. Lim, B. Kang, and E. G. Im, “Malware Analysis Using Visualized Images and Entropy Graphs,” Int. J. Inf. Secur., vol. 14, no. 1, pp. 1–14, 2015.
- Baysa, R. M. Low, and M. Stamp, “Structural Entropy and Metamorphic Malware,” J. Comput. Virol. hacking Tech., vol. 9, no. 4, pp. 179–192, 2013.
- Ravi and R. Manoharan, “Malware Detection Using Windows Api Sequence and Machine Learning,” Int. J. Comput. App., vol. 43, no. 17, pp. 12–16, 2012.
- G. Sundarkumar, V. Ravi, I. Nwogu, and V. Govindaraju, “Malware Detection via API Calls, Topic Models and Machine Learning,” In IEEE Int. Conf. on Automation Sci. and Eng., vol. 2015-Octob, pp. 1212–1217, 2015.
- Fu, J. Pang, R. Zhao, Y. Zhang, and B. Wei, “Static Detection of Api-Calling Behavior from Malicious Binary Executables,” In 2008 Int. Conf. on Comput. and Elect. Eng., pp. 388–392, 2008.
- Abraham and I. Chengalur-Smith, “An Overview of Social Engineering Malware: Trends, Tactics, and Implications,” Tech. Soc., vol. 32, no. 3, pp. 183–196, 2010.
- -S. Kim, W. Jung, S. Kim, S. Lee, and E. T. Kim, “Evaluation of Image Similarity Algorithms for Malware Fake-Icon Detection,” In 2020 Int. Conf. on Information and Communication Tech. Convergence (ICTC), pp. 1638–1640, 2020.
- Chen, T. Li, M. Abdulhayoglu, and Y. Ye, “Intelligent Malware Detection Based on File Relation Graphs,” In Proc. of the 2015 IEEE 9th Int. Conf. on Semantic Computing (IEEE ICSC 2015), pp. 85–92, 2015.
- Parsa and F. Jamshidinia, “An Approach to Rootkit Detection Based on Virtual Machine Introspection,” Passiv. Def. Q., vol. 10, no. 2, pp. 33–42, 2019.
- Lau and V. Svajcer, “Measuring Virtual Machine Detection in Malware Using DSD Tracer,” J. Comput. Virol., vol. 6, no. 3, pp. 181–195, 2010.
- Huang, U. Verma, C. Fralick, G. Infantec-Lopez, B. Kumar, and C. Woodward, “Malware Evasion Attack and Defense,” pp. 34–38, 2019,
- R. A. Grégio, V. M. Afonso, D. S. F. Filho, P. L. de Geus, and M. Jino, “Toward a Taxonomy of Malware Behaviors,” Comput. J., vol. 58, no. 10, pp. 2758–2777, 2015.
- Z. Kolter and M. A. Maloof, “Learning to detect Malicious Executables in the Wild,” in KDD-2004 - Proc. of the Tenth ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, pp. 470–478, 2004.
- Siddiqui, M. C. Wang, and J. Lee, “Detecting Internet Worms Using Data Mining Techniques,” J. Syst. Cybern. Informatics, vol. 6, no. 6, pp. 48–53, 2009.
|