تعداد نشریات | 38 |
تعداد شمارهها | 1,240 |
تعداد مقالات | 8,993 |
تعداد مشاهده مقاله | 7,843,246 |
تعداد دریافت فایل اصل مقاله | 4,704,970 |
جبران سازی خطای فریب سیگنال GPS با بکارگیری تبدیل موجک مبتنی بر الگوریتم PSO در بخش اکتساب گیرنده | ||
پدافند الکترونیکی و سایبری | ||
مقاله 3، دوره 10، شماره 4 - شماره پیاپی 40، بهمن 1401، صفحه 19-31 اصل مقاله (1.17 M) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
رضا سلیمانی مجد1؛ سمیرا توحیدی2؛ سید محمدرضا موسوی* 3 | ||
1دانشجوی کارشناسی، دانشکده مهندسی برق، دانشگاه علم و صنعت ایران، تهران، ایران | ||
2دانشجوی دکتری، دانشکده مهندسی برق، دانشگاه علم و صنعت ایران، تهران، ایران | ||
3استاد، دانشکده مهندسی برق، دانشگاه علم و صنعت ایران، تهران، ایران | ||
تاریخ دریافت: 09 آذر 1400، تاریخ بازنگری: 22 مرداد 1401، تاریخ پذیرش: 14 شهریور 1401 | ||
چکیده | ||
فریب یکی از خطرناک ترین اختلالات در سامانه موقعیت یابی جهانی (GPS) است. فریبنده ها با ارسال سیگنالی که از نظر ساختاری کاملاً مشابه با سیگنال اصلی GPS است، تلاش میکنند عملکرد بخش های مختلف گیرنده را تحت تاثیر قرار دهند و آن را مجبور به موقعیت یابی اشتباه نمایند. این تحقیق بر مرحله اکتساب تمرکز دارد. در طی فرآیند اکتساب، گیرندههای GPS مقادیر فرکانس داپلر و فاز کد شبه تصادفی (PRN) سیگنال دریافتی را که برای ردیابی سیگنالهای ماهوارهای GPS ضروری هستند، تخمین میزنند. یکی از تاثیرات سیگنال فریب در بخش اکتساب گیرنده، افزایش فعل و انفعالات در شاخههای همبستگی متعامد (Q) است. در سال 2018، اضافه نمودن واحد نویززدایی بر روی شاخه همبستگی Q در مرحله اکتساب جهت کاهش فعل و انفعالات مذکور به عنوان یک روش مقابل با فریب ارائه گردید. در این مقاله، روش مذکور به عنوان پایه اصلی کار قرار گرفته است. در اینجا تلاش می شود با بهره گیری از روش های قدرتمند پردازش تکاملی، واحد نویززدایی اضافه شده در شاخه همبستگی Q با هدف مقابله با حمله فریب، به صورت بهینه تنظیم شود. به طور خاص، به منظور دستیابی به الگوریتم نویززدایی مناسب تر برای مقابله با اثرات فریب، به کارگیری الگوریتم تکاملی ازدحام ذرات (PSO) جهت تعیین پارامترهای کلیدی تبدیل موجک گسسته (DWT) بر پایه موجک مادر هار پیشنهاد شده است. به منظور ارزیابی روش پیشنهادی، ابتدا عملکرد الگوریتم را در کاهش نویز در چهار پایگاه داده الگو بلوک ها، برجستگی ، سینوسی سنگین و داپلر سنجیده و با چهار روش نویززدایی معمول Rigrsure، Heursure، Sqtwolog و Minimaxi مقایسه شده است که به ترتیب 3/47، 4/38، 3/47 و 30 درصد کاهش نویزی بیشتر حاصل شد. در نهایت، الگوریتم پیشنهادی در شاخه ی Q واحد اکتساب گیرنده GPS قرار داده شد و عملکرد آن در کاهش اثرات فریب بررسی گردید. نتایج حاصله، نشان دهنده برتری 74/37 درصدی الگوریتم پیشنهادی در مقایسه با روش پایه است. | ||
کلیدواژهها | ||
گیرنده GPS؛ حمله فریب؛ تبدیل موجک؛ الگوریتم بهینه سازی ازدحام ذرات؛ نویززدایی | ||
عنوان مقاله [English] | ||
Novel Spoofing Mitigation Method using Wavelet Transform Based on PSO Algorithm in the Acquisition Stage of GPS Receiver | ||
نویسندگان [English] | ||
Reza Soleimani Majd1؛ S. Tohidi2؛ Mohammad Reza Mosavi3 | ||
1Bachelor student, Faculty of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran | ||
2PhD student, Faculty of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran | ||
3Professor, Faculty of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran | ||
چکیده [English] | ||
The spoofing attack is one of the most serious interferences in the Global Positioning System (GPS). By propagating a signal structurally similar to the original GPS signal, the spoofers try to influence the function of different parts of the receiver and force it to make a wrong positioning. This study focus on the acquisition stage. During the acquisition process, GPS receivers estimate the values of Doppler frequency and Pseudo Random Noise (PRN) code phase of the received signal, which are necessary for tracking the GPS satellite signals. One of the effects of the spoofing signal in the acquisition unit of the receiver is to increase the interactions in the Quadrate correlation taps (Q-correlation tap). In 2018, adding a denoising unit on the Q-correlation tap in the acquisition stage to reduce the interactions mentioned above was presented as a spoofing mitigation method. In this paper, the mentioned method is placed as the primary basis of the work. Here, by using powerful methods of evolutionary computing, the denoising unit added in the Q-correlation tap is tried to be optimally adjusted to mitigate the spoofing attack. Specifically, to achieve a more efficient denoising method for spoofing mitigation, the Particle Swarm Optimization (PSO) algorithm is proposed to determine the critical parameters of the Discrete Wavelet Transform (DWT) based on the Haar wavelet. In order to evaluate the proposed method, first, the noise reduction performance of the algorithm is measured on four benchmark signals, namely Blocks, Bumps, Heavy Sine, and Doppler. Then, compared to four traditional methods, namely, Rigrsure, Heursure, Sqtwolog, and Minimaxi, the developed de-nosing method outperformed the former methods by 47.3%, 38.4%, 47,3%, and 30%, respectively. Finally, the proposed algorithm was placed in the Q-correlation tap of the GPS receiver acquisition stage, and its performance in reducing the spoof effects was investigated. The results show that the proposed algorithm is 37.74% more efficient compared to the method that was considered the primary method. | ||
کلیدواژهها [English] | ||
Spoofing Attack, Wavelet Transform, Particle Swarm Optimization, Noise Reduction | ||
مراجع | ||
[1] M. R. Mosavi, "Data processing on single-frequency GPS receivers," Iran University of Science and Technology, 2010. (in persion) [2] M. Moazedi, M. Mosavi, Z. Nasrpooya, & A. Sadr, "GPS spoofing mitigation using adaptive estimator in tracking loop," Journal of Electronical & Cyber Defence, vol. 6, no. 3, 2018. (in Persian) [3] H. N. Li, D. S. Li, & G. B. Song, "Recent applications of fiber optic sensors to health monitoring in civil engineering," Engineering Structure, vol. 26, no. 11, pp.1647-1657, 2004. [4] D. Ahn, J. Park, C. Kim, J. Kim, Y. Qian & T. Itoh, "A design of the low-pass filter using the novel microstrip defected ground structure," IEEE Transactions on Microwave Theory and Techniques, vol. 49, no. 1, pp. 86-93, 2001. [5] B. Baykal & A. G. Constantinides, "A neural approach to the underdetermined-order recursive least-squares adaptive filtering," Neural Networks, vol. 10, no. 8, pp. 1523-1531, 1997. [6] M. Han, Y. Liu, J. Xi & W. Guo, "Noise smoothing for nonlinear time series using wavelet soft threshold," IEEE Signal Processing Letters, vol. 14, no. 1, pp. 62-65, 2007. [7] J. Baili, S. Lahouar, M. Hergli, I. L. Al-Qadi, & K. Besbes, "GPR signal de-noising by discrete wavelet transform," Ndt and E International, vol. 42, no. 8, pp.696-703, 2009. [8] T. H. Yi, H. N. Li, & X. Y. Zhao, "Noise smoothing for structural vibration test signals using an improved wavelet thresholding technique," Sensors, vol. 12, no. 8, pp. 11205-11220, 2012. [9] D. L. Donoho & I. M. Johnstone, "Adapting to unknown smoothness via wavelet shrinkage," J. Am. Statist. Assoc. vol. 90, no. 432, pp. 1200-1224, 1995. [10] D. L. Donoho & I. M. Johnstone, "Ideal spatial adaptation via wavelet shrinkage," Biometrika, vol. 81, no. 3, pp. 425-455, 1994. [11] A. R. Baziar, M. R. Mosavi, & M. Moazedi, "Spoofing mitigation using double stationary wavelet transform in civil GPS receivers," Wireless Personal Communications, vol. 109, no. 3, pp.1827-1844, 2019. [12] X. Gu, J. Shi, J. Li, Y. Huang & J. Lin, "Application of wavelets analysis in image denoising," 2008 International Conference on Apperceiving Computing and Intelligence Analysis, pp. 49-52, 2008. [13] B. J. Yoon & P. P. Vaidyanathan, "Wavelet-based denoising by customized thresholding," IEEE International Conference on Acoustics, Speech, and Signal Processing, 2004. [14] G. X. Song & R. Z. Zhao, "Three novel models of threshold estimator for wavelet coefficients," International Conference on Wavelet Analysis and Its Applications, pp. 145-150, 2001. [15] M. R. Mosavi, M. Moazedi, M. J. Rezaei & A. Tabatabaei, "Interference mitigation in GPS receivers," Iran University of Science and Technology, 2015. (in persion) [16] KD. Wesson, JN. Gross, TE. Humphreys, & BL. Evans, "GNSS signal authentication via power and distortion monitoring," IEEE Transactions on Aerospace and Electronic Systems, vol. 54, no. 2, pp. 739-754, 2018. [17] X. Shang, F. Sun, L. Zhang, J. Cui, & Y. Zhang, "Detection and mitigation of GNSS spoofing via the pseudo-range difference between epochs in a multicorrelator receiver," GPS Solutions, vol. 26, no. 2, pp. 1-14, 2022. [18] D. P. Shepard & T. E. Humphreys, "Characterization of receiver response to spoofing attacks, " GPS World, vol. 21, no. 9, pp. 27-33, 2010. [19] S. C. Lo & P. K. Enge, "Authenticating aviation augmentation system broadcasts," IEEE/ION Position, Location and Navigation Symposium, pp. 708-717, 2010. [20] C. Sun, J. W. Cheong, A. G. Dempster, H. Zhao, L. Bai, & W. Feng, "Robust spoofing detection for GNSS instrumentation using Q-channel signal quality monitoring metric," IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1-15, 2021. [21] A. M. Khan & A. Attiq, "Global navigation satellite systems spoofing detection through measured autocorrelation function shape distortion," International Journal of Satellite Communications and Networking, vol. 40, no. 2, pp. 148-156, 2022. [22] W. Zhou, Z. Lv, X. Deng & Y. Ke, "A new induced GNSS spoofing detection method based on weighted second-order central moment," IEEE Sensors Journal, vol. 22, no. 12, pp. 12064-12078, 2022. [23] J.N. Gross, C. Kilic, & TE. Humphreys, "Maximum-likelihood power-distortion monitoring for GNSS-signal authentication," IEEE Transactions on Aerospace and Electronic Systems, vol. 55, pp. 469-475, 2019. [24] Y. Guo, L. Miao, & X. Zhang, "Spoofing detection and mitigation in a multi-correlator GPS receiver based on the maximum likelihood principle," Sensors, vol. 19, no. 1, 2019. [25] Y. Liu, S. Li, Q. Fu, Z. Liu, & Q. Zhou, "Analysis of kalman filter innovation-based GNSS spoofing detection method for INS/GNSS integrated navigation system," IEEE Sensors Journal, vol. 19, no. 13, pp. 5167-5178, 2019. [26] N. Stenberg, E. Axell, J. Rantakokko, & G. Hendeby, "Results on GNSS spoofing mitigation using multiple receivers," Journal of the Institute of Navigation, vol. 69, no. 1, pp. 1-29, 2022. [27] B. Pardhasaradhi, G. Srinath, G. S. Vandana, P. Srihari, & P. Aparna, "GNSS spoofing detection and mitigation in multireceiver configuration via tracklets and spoofer localization," IEEE Access, vol. 10, pp. 42014-42028, 2022. [28] F. Rothmaier, Y. H. Chen, S. Lo, & T. Walter, "GNSS spoofing detection through spatial processing," Journal of Navigation, vol. 68, no. 2, pp. 243-258, 2021. [29] Z.Lin, C. Haibin, & Z. Naitong, "Anti-spoofing extended Kalman filter for satellite navigation receiver," IEEE Conference on Wireless Communications, Networking and Mobile Computing, pp. 996-999, 2007. [30] M. R. Mosavi, R. Zebarjad & M. Moazedi, "Novel anti-spoofing methods based on discrete wavelet transform in the acquisition and tracking stages of civil GPS receiver," International Journal of Wireless Information Networks, vol. 25, no. 44, pp. 449-460, 2018. [31] L. Chun-Lin, "A tutorial of the wavelet transform," NTUEE, Taiwan, 2010. [32] R. Polikar, "The wavelet tutorial," IOWA State University, USA, 1996. [33] C. Taswell, "The what, how and why of wavelet shrinkage denoising," Journal of Computing in Science and Engineering, vol. 2, no. 3, pp. 12-19, 2000. [34] Y. Chen, Y. Cheng, & H. Liu, "Application of improved wavelet adaptive threshold de-noising algorithm in FBG demodulation," Optik, vol. 132, pp.243-248, 2017. | ||
آمار تعداد مشاهده مقاله: 213 تعداد دریافت فایل اصل مقاله: 216 |