تعداد نشریات | 38 |
تعداد شمارهها | 1,240 |
تعداد مقالات | 8,994 |
تعداد مشاهده مقاله | 7,844,878 |
تعداد دریافت فایل اصل مقاله | 4,706,522 |
بهینهسازی سیستم خنککننده موتور موشک با سوخت هیدروژن مایع/اکسیژن مایع با استفاده از الگوریتم زنبورعسل | ||
مکانیک هوافضا | ||
مقاله 8، دوره 19، شماره 3 - شماره پیاپی 73، آذر 1402، صفحه 109-121 اصل مقاله (871.43 K) | ||
نوع مقاله: گرایش پیشرانش و انتقال حرارت | ||
نویسنده | ||
نوید بزرگان* | ||
استادیار، گروه مهندسی مکانیک، واحد آبادان، دانشگاه آزاد اسلامی، آبادان، ایران | ||
تاریخ دریافت: 03 بهمن 1401، تاریخ بازنگری: 22 بهمن 1401، تاریخ پذیرش: 12 اسفند 1401 | ||
چکیده | ||
ارتقای عملکرد حرارتی سیستم خنککننده موتور موشک سوخت مایع یکی از مهمترین و پیچیدهترین مشکلات در طراحی موتور موشکهای نوین در صنایع موشکی میباشد. در پژوهش حاضر، بهینهسازی تکهدفه سیستم خنککننده محفظه احتراق و نازل یک موتور موشک با سوخت هیدروژن مایع/اکسیژن مایع با تابع هدف ضریب انتقال حرارت کلی و چهار پارامتر طراحی قطر و ضخامت لولههای خنککننده، شعاع گلوگاه و دبی جرمی هیدروژن مایع (سیال خنککننده) با استفاده از الگوریتم زنبورعسل (BA) انجام میگردد. در این فرآیند بهینهسازی با تحلیل انتقال حرارت گازهای احتراقی با دیوارههای محفظه و با استفاده از الگوریتم بهینهسازی زنبورعسل، حساسیت پارامترهای طراحی در نظر گرفتهشده بر تابع هدف ضریب انتقال حرارت کلی با ثابت در نظر گرفتن این پارامترها در محدودههای طراحی و متغیر در نظر گرفتن سایر پارامترها موردبررسی قرارگرفته است. نتایج این تحقیق نشان میدهد که ضریب انتقال حرارت کلی در فرآیند بهینهسازی سیستم خنککننده این موتور موشک با تحلیل پارامتری بر روی چهار پارامتر طراحی مذکور میتواند در حدود 78/17% افزایش داشته باشد. | ||
تازه های تحقیق | ||
| ||
کلیدواژهها | ||
بهینهسازی تک هدفه؛ الگوریتم زنبور عسل؛ موتور موشک سوخت مایع؛ سیستم خنککننده؛ ضریب انتقال حرارت کلی | ||
عنوان مقاله [English] | ||
Optimizing the Cooling System of an LH2/LOX Rocket Engine using the Bees Algorithm | ||
نویسندگان [English] | ||
Navid Bozorgan | ||
Assistant Professor, Department of Mechanical Engineering, Abadan Branch, Islamic Azad University, Abadan, Iran | ||
چکیده [English] | ||
Upgrading the thermal efficiency of the cooling system of liquid rocket engines is one of the most significant and intricate problems in designing modern rocket engines in the missile industry. The present study employed the Bees algorithm (BA) to attempt a single-objective optimization of the cooling system of the combustion chamber and nozzle of an LH2/LOX rocket engine considering the overall heat transfer coefficient objective function and four parameters, including the diameter and thickness of the cooling tubes, the radius of the throat, and the mass flow rate of liquid hydrogen (cooling fluid). The optimization was examined by the heat transfer analysis of combustion gases with the chamber walls, the use of the BA optimization algorithm, and the consideration of the sensitivity of the design parameters regarded for the overall heat transfer coefficient objective function. In this respect, these parameters were considered constant in the design ranges, while other parameters were variable. The results show that the overall heat transfer coefficient can increase almost by 17.78% during the optimization process of the cooling system of this rocket engine through the parametric analysis of the four mentioned design parameters. | ||
کلیدواژهها [English] | ||
Single-objective optimization, Bees Algorithm, Liquid rocket engine, Cooling system, Overall heat transfer coefficient | ||
مراجع | ||
[1] Yang V, Habiballah M, Popp M, Hulka J. Liquid Rocket Thrust Chambers: Aspects of Modeling, Analysis and Design. American Institute of Aeronautics and Astronautics, In C. 2005.## [2] Yang Z, Ma Y, Zhang N, Smith R. Design optimization of shell and tube heat exchangers sizing with heat transfer enhancement. Computers & Chemical Engineering. 2020; 137:106821.## [3] Xu G, Zhuang L, Dong B, Liu Q, Wen J. Optimization design with an advanced genetic algorithm for a compact air-air heat exchanger applied in aero engine. International Journal of Heat and Mass Transfer. 2020; 158:119952.## [4] Bozorgan N, Ghafouri A, Assareh E., Safieddin Ardebili SM. Design and Optimization of Gasketed-Plate Heat Exchanger using Bees Algorithm. International Journal of Advanced Design and Manufacturing Technology. 2021; 14(3):55-64.## [5] Du Y, Hu C, Yang C, Wang H, Dong W. Size optimization of heat exchanger and thermoeconomic assessment for supercritical CO2 recompression Brayton cycle applied in marine. Energy. 2022; 239:122306.## [6] Alimohammadi HR, Naseh H, Ommi F. A Novel Framework for Liquid Propellant Engine’s Cooling System Design By Sensitivity Analysis Based on RSM and Multi-objective Optimization Using PSO. Advances in Space Research. 2021; 67(5):1682-1700.## [7] Song J, Cui P, Li Q, Cheng P, Chen L, Liang T. System scheme and thermal performance of a third fluid cooled rocket engine. Acta Astronautica. 2022; 191:204-215.## [8] Lee SB, Lim TK, Roh TS. Design optimization of liquid rocket engine using a genetic algorithm, Journal of the Korean of Propulsion Engineers. 2021; 16:25-33.## [9] Saqlain A, He LS. Optimization and sizing for propulsion system of liquid rocket using genetic algorithm. Chinese Journal of Aeronautics. 2007; 20:40-60.## [10] Shafaee M, Mohammad Zadeh P, Elkaie A, Fallah H. Design optimization of a thrust chamber using a mass-based model to improve the geometrical and performance parameters of low-thrust space propulsion systems. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. 2018; 233: 095441001876728.## [11] Ramesh D, Farrokhi R. Proposing a new strategy to determine optimal parameters for open cycle liquid propellant engines. conference of Iran aerospace association. 2006; Tehran, Iran.## [12] Bozorgan N, Ghafouri A, Assareh E, Safieddin Ardebili SM. Design and optimization of a gas turbine regenerator with fixed pressure drop using GA and firefly algorithms. Journal of Theoretical and Applied Mechanics. 2020; 58(4): 943-952.## [13] Garcia JCS, Tanaka H, Giannetti N, Sei Y, Saito K, Houfuku M, Takafuji R. Multiobjective geometry optimization of microchannel heat exchanger using real-coded genetic algorithm. Applied Thermal Engineering. 2022; 202:117821. [14] Han U, Kang H, Lim H, Han J, Lee H. Development and design optimization of novel polymer heat exchanger using the multi-objective genetic algorithm. International Journal of Heat and Mass Transfer. 2022; 144:117821.## [15] Wang C, Cui Z, Yu H, Chen K, Wang J. Intelligent optimization design of shell and helically coiled tube heat exchanger based on genetic algorithm. International Journal of Heat and Mass Transfer. 2020; 159:120140.## [16] Zarea H, Kashkooli FM, Mehryan AM, Saffarian MR, Beherghani EN. Optimal design of plate-fin heat exchangers by a Bees Algorithm. Applied Thermal Engineering. 2014; 69:267-277.## [17] Pham DT, Ghanbarzadeh A, Koc E, Otri S, Rahim S, Zaidi M. The Bees Algorithm Technical Note. Manufacturing Engineering Centre. 2005; Cardiff University. UK.## [18] Daneshgar S, Zahedi R. Optimization of power and heat dual generation cycle of gas microturbines through economic, exergy and environmental analysis by bee algorithm. Energy Reports. 2022; 8:1388-1396.## [19] Veris ADL. Fundamental concepts of liquid-propellant rocket engines, Springer Aerospace Technology, 2019.## [20] Wang ZG. Internal Combustion Processes of Liquid Rocket Engines: Modeling and Numerical Simulations. Wiley Aeronautic & Aerospace Engineering, 2016.## [21] Bartz DR. Turbulent boundary-layer heat transfer from rapidly accelerating flow of rocket combustion gases and of heated air. NASA CR-62615. Jet Propulsion Laboratory. 1963; California Institute of Technology, Pasadena, California, USA.## [22] Wang Q, Wu F, Zeng M, Luo L, Sun J. Numerical simulation and optimization on heat transfer and fluid flow in cooling channel of liquid rocket engine thrust chamber. Engineering Computations. 2006; 23(8):907-921.## [23] Mishra DP. Fundamentals of rocket propulsion, Taylor & Francis, 2017.## [24] Huzel DK, Huang DH. Modern engineering for design of liquid-propellant rocket engines, American Institute of Aeronautics and Astronautics, 1992.## [25] Locke JM, Landrum DB. Study of heat transfer correlations for supercritical hydrogen in regenerative cooling channels. Journal of Propulsion and power. 2008; 24(1):94-103.## | ||
آمار تعداد مشاهده مقاله: 511 تعداد دریافت فایل اصل مقاله: 256 |