تعداد نشریات | 38 |
تعداد شمارهها | 1,240 |
تعداد مقالات | 8,994 |
تعداد مشاهده مقاله | 7,847,927 |
تعداد دریافت فایل اصل مقاله | 4,708,123 |
کنترل مقاوم مبتنی بر تخمینگر زیربهینه برای بازوهای رباتیک بهشدت غیرخطی تحت تأثیر نامعینیهای مدل و اغتشاشات محیطی | ||
مکانیک هوافضا | ||
مقاله 7، دوره 19، شماره 4 - شماره پیاپی 74، دی 1402، صفحه 85-101 اصل مقاله (2.33 M) | ||
نوع مقاله: گرایش دینامیک، ارتعاشات و کنترل | ||
نویسندگان | ||
اکبر اصغرزاده بناب* 1؛ نعیم یوسفی لادمخی2؛ حمید بیگدلی3 | ||
1نویسنده مسئول: استادیار، گروه مطالعات علم و فناوری، دانشگاه فرماندهی و ستاد آجا، تهران، ایران | ||
2دانشجوی دکتری، دانشکده مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران، ایران | ||
3استادیار، گروه مطالعات علم و فناوری، دانشگاه فرماندهی و ستاد آجا، تهران، ایران | ||
تاریخ دریافت: 09 فروردین 1402، تاریخ بازنگری: 05 اردیبهشت 1402، تاریخ پذیرش: 27 اردیبهشت 1402 | ||
چکیده | ||
یکی از چالشهای اساسی در بهکارگیری بازوهای رباتیکی در صنایع مختلف مانند خط تولید و مونتاژ، مراکز پزشکی و جراحی، صنایع فضایی و ادوات نظامی عدم دستیابی به مدلسازی و کنترل دقیق آنهاست. در این مقاله مسئله کنترل مقاوم مبتنی بر تخمینگر بهینه برای سیستمهای دینامیک بهشدت غیرخطی تحت تأثیر عدمقطعیتهای سیستمی و محیطی، انجامشده است. در نظر گرفتن زیرسیستم الکتریکی محرک کوپلشده به زیرسیستم مکانیکی در مدلسازی، منجر به مدل کاملتر و واقعیتر معروف به رباتهای با مفاصل انعطافپذیر الکتریکی شده است. متغیرهای حالت نامعلوم که امکان اندازهگیری آنها توسط سنسورها وجود ندارد، توسط تخمینگر معادله ریکاتی وابسته به حالت تعیین میشود. با بهکارگیری رویکرد پیشنهادی در شبیهسازی یک بازوی دو درجه آزادی با مفاصل انعطافپذیر الکتریکی بهعنوان یک نمونه کاربردی، هر دو مزیت استحکام و بهینگی برای سیستم حاصل میشود. سپس روش پیشنهادی با روش کنترل مودلغزشی و تخمینگر فیلتر کالمن مقایسه شده است. نتایج بهدستآمده بهبود استحکام سیستم در مقابل عدمقطعیت و اغتشاشات را با بهکارگیری روش پیشنهادی نشان میدهد. نرم خطای نهایی پنجه ربات در الگوریتم پیشنهادی و فیلتر کالمن به ترتیب 13/4 میلیمتر و 02/37 میلیمتر و نرم ورودی کنترلی (مصرف انرژی) به ترتیب 5/7 و 8/16 بوده است؛ بنابراین، دستیابی به هدف، با دقت بالاتر و تلاش کنترلی حداقل با استفاده از روش پیشنهادی تأمینشده است. | ||
تازه های تحقیق | ||
| ||
کلیدواژهها | ||
کنترل مودلغزشی؛ تخمینگر زیربهینه؛ عدم قطعیت مدل؛ نویز اندازهگیری؛ اغتشاش فرآیند | ||
عنوان مقاله [English] | ||
Robust Control Based on Suboptimal Estimator for Highly Nonlinear Robotic Arms Influenced Model Uncertainties and Environmental Disturbance | ||
نویسندگان [English] | ||
Akbar Asgharzadeh- Bonab1؛ Naeim Yousefi Lademakhi2؛ Hamid Bigdeli3 | ||
1Corresponding author: Assistant Professor, Department of Science and Technology Studies, AJA Command and Staff University, Tehran, Iran | ||
2Ph.D. Candidate, Faculty of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran. | ||
3Assistant Professor, Department of Science and Technology Studies, AJA Command and Staff University, Tehran, Iran | ||
چکیده [English] | ||
One of the main challenges of using robotic arms in various industrial applications such as: production and assembly line, medical and surgical centers, space industries and military instruments is the lack of accurate modeling and control of the systems. In this paper, the problem of robust control based on the suboptimal estimator for highly nonlinear dynamic systems affected by systemic and environmental uncertainties is addressed. Considering the coupled electrical-driven and mechanical subsystems in modeling leads to a completer and more realistic model known as the electrical flexible joint robots (EFJR). The state-dependent Riccati equation estimator is used to determine unknown state variables that cannot be measured by sensors. By applying the proposed approach in simulating a two degree-of-freedom (DOF) arm with electrically flexible joints as a practical case study, both robustness and optimality are obtained for the system. Then, the proposed method is compared to the sliding mode control and the Kalman filter estimator. The obtained results indicate that the proposed method has improved the system robustness against uncertainty and disturbance. The norm of final error of the robot End-effector has been obtained as 4.13 mm and 37.02 mm in the proposed algorithm and Kalman filter method, respectively. Also, the norm of control input (energy consumption) has been obtained as 7.5 and 16.8 by the two methods, respectively. Therefore, the proposed method provides the possibility of achieving to the goal with a higher accuracy and less control effort. | ||
کلیدواژهها [English] | ||
Sliding mode control, Suboptimal estimator, Model uncertainty, Measurement noise, Process disturbance | ||
مراجع | ||
[1] Nasiri N, Sadjadian H. Voltage-based control of a flexible-joint electrically driven robot using backstepping approach. In 4th Annual International Power Electronics, Drive Systems and Technologies Conference; 2013:541-546 IEEE##. [2] Izadbakhsh A, Khorashadizadeh S. Single-loop PID controller design for electrical flexible-joint robots. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2020;42(2):1-12##. [3] Sira-Ramirez H, Spong MW. Variable structure control of flexible joint manipulators. International Journal of Robotics and Automation. 1988;3(2):57-64##. [4] Al-Ashoor R, Khorasani K, Patel R, Al-Khalili A. Robust adaptive controller design for flexible joint manipulators. Robotics and Computer-Integrated Manufacturing. 1992;9(2):101-112##. [5] Cloutier JR, D’Souza CN, Mracek CP. Nonlinear regulation and nonlinear H∞ control via the state-dependent Riccati equation technique: Part 1, theory. Proceedings of the International Conference on Nonlinear Problems in Aviation and Aerospace. 1996: Embry Riddle University##. [6] Xin M, Balakrishnan S, Huang Z. Robust SDRE based robot manipulator control. Proceeding of IEEE International Conference on Control Applications. 2001:369-374##. [7] Huang L, Ge S, Lee T. Position/force control of uncertain constrained flexible joint robots. Mechatronics. 2006;16(2):111-120##. [8] Farooq M, Wang DB. Hybrid force/position control scheme for flexible joint robot with friction between and the end-effector and the environment. International Journal of Engineering Science. 2008;46(12):1266-1278##. [9] Merabet A, Gu J. Robust nonlinear predictive control with modeling uncertainties and unknown disturbance for single-link flexible joint robot. 2008 7th World Congress on Intelligent Control and Automation; 2008;IEEE:1516-1521##. [10] Lee J, Yeon JS, Park JH, Lee S. Robust back-stepping control for flexible-joint robot manipulators. 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2007;IEEE:183-188##. [11] Zahiripour SA. Robust sliding mode controller design for the complete model of an aircraft in the presence of a variety of uncertainties. Journal of Aerospace Mechanics. 2022;18(3):169-180##. [12] Fateh MM. Nonlinear control of electrical flexible-joint robots. Nonlinear Dynamics. 2012;67(4):2549-2559##. [13] Fateh MM, Asrari H, Khorashadizadeh S. Adaptive fuzzy sliding mode control of a robotic manipulator in task-space using voltage control strategy. Journal of Solid and Fluid Mechanics. 2015;5(3):17-26##. [14] Chang Y-C, Yen H-M. Robust tracking control for a class of electrically driven flexible-joint robots without velocity measurements. International Journal of Control. 2012;85(2):194-212##. [15] Izadbakhsh A, Fateh M. Robust Lyapunov-based control of flexible-joint robots using voltage control strategy. Arabian Journal for Science and Engineering. 2014;39(4):3111-3121##. [16] Cui M, Wu Z. Trajectory tracking of flexible joint manipulators actuated by DC-motors under random disturbances. Journal of the Franklin Institute. 2019;356(16):9330-9343##. [17] Kalman RE. A new approach to linear filtering and prediction problems. Journal of basic Engineering. 1960;82(1):35-45##. [18] Sorenson HW. Least-squares estimation: from Gauss to Kalman. IEEE spectrum. 1970;7(7):63-68##. [19] Sun Y, Guan L, Chang Z, Li C, Gao Y. Design of a low-cost indoor navigation system for food delivery robot based on multi-sensor information fusion. Sensors. 2019;19(22):4980##. [20] Luenberger D. An introduction to observers. IEEE Transactions on Automatic Control. 1971;16(6):596-602##. [21] Çimen T. Systematic and effective design of nonlinear feedback controllers via the state-dependent Riccati equation (SDRE) method. Annual Reviews in Control. 2010;34(1):32-51##. [22] Jaganath C, Ridley A, Bernstein DS. A SDRE-based asymptotic observer for nonlinear discrete-time systems. Proceedings of the 2005, American Control Conference. 2005;3630-3635: IEEE##. [23] Hassan MF. Observer-based controller for discrete-time systems: a state dependent Riccati equation approach. Nonlinear Dynamics. 2012;70(1):693-707##. [24] Beikzadeh H, Taghirad HD. Robust SDRE filter design for nonlinear uncertain systems with an H∞ performance criterion. ISA Transactions. 2012;51(1):146-152##. [25] Souza L, Gonzales R. Application of the state-dependent Riccati equation and Kalman filter techniques to the design of a satellite control system. Shock and Vibration. 2012;19(5):939-946##. [26] Alam W, Ahmad S, Mehmood A, Iqbal J. Robust sliding mode control for flexible joint robotic manipulator via disturbance observer. Interdisciplinary Description of Complex Systems: INDECS. 2019;17(1-B):85-97##. [27] Delpasand M, Farrokhi M. Designing an adaptive fuzzy extended state observer for nonlinear affine systems with external disturbance. Journal of Aerospace Mechanics. 2022;18(2):109-124##. [28] Nasiri N, Lademakhi NY. Nonlinear combined SMC-SDRE control versus SMC and SDRE approaches for electrical flexible-joint robots based on optimal observer. In 9th RSI International Conference on Robotics and Mechatronics (ICRoM) 2021;568-573: IEEE##. [29] Eu CN. Numerical Analysis in Nonlinear Least Squares Methods and Applications (Doctoral dissertation, Curtin University). 2017##. [30] Aberoomand V, Fesharakifard R, Kamal Eigoli A. Torque control of a hybrid actuator in the presence of parametric uncertainties and physical constraints. Modares Mechanical Engineering. 2017;16(12):227-38##. [31] Li R, Assadian FF. Role of uncertainty in model development and control design for a manufacturing process. In Production Engineering and Robust Control. 2022##. [32] Blaabjerg F, editor. Control of Power Electronic Converters and Systems: Volume 2. Academic Press; 2018 Apr 27##. [33] Nasiri N, Fakharian A, Menhaj MB. Observer-based robust control for flexible-joint robot manipulators: A state-dependent Riccati equation-based approach. Transactions of the Institute of Measurement and Control. 2020;42(16):3135-3155##. [34] Modirrousta A, Khodabandeh M. Design of an adaptive integral sliding mode control for robust and finite time stabilization for a quadrotor. Tabriz Journal of Electrical Eng. 2016;46(1):321-32##. [35] Mazare M, Taghizadeh M. Adaptive sliding mode control with uncertainty estimator for a 3-[P-2 (US)] translational parallel robot. Modares Mechanical Engineering. 2017;16(10):181-90##. [36] Kuo Y-L. Robust chaos synchronizations using an SDRE-based sub-optimal control approach. Nonlinear Dynamics. 2014;76(1):733-742##. [37] Nasiri N, Fakharian A, Menhaj MB. A novel controller for nonlinear uncertain systems using a combination of SDRE and function approximation technique: Regulation and tracking of flexible-joint manipulators. Journal of the Franklin Institute. 2021;358(10):5185-5212##. | ||
آمار تعداد مشاهده مقاله: 156 تعداد دریافت فایل اصل مقاله: 223 |