تعداد نشریات | 38 |
تعداد شمارهها | 1,240 |
تعداد مقالات | 8,993 |
تعداد مشاهده مقاله | 7,843,320 |
تعداد دریافت فایل اصل مقاله | 4,705,038 |
بکارگیری نُرم صفر هموار شده وزندار در طبقهبندی نمایش تُنُک جهت شناسایی چهره | ||
پدافند الکترونیکی و سایبری | ||
مقاله 6، دوره 11، شماره 3 - شماره پیاپی 43، آبان 1402، صفحه 57-65 اصل مقاله (810.14 K) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
محمّدسعید علمداری1؛ مسعود فاطمی* 2 | ||
1دانشجوی دکتری ،دانشگاه خواجه نصیر الدین طوسی، تهران، ایران | ||
2دانشیار،دانشگاه خواجه نصیر الدین طوسی، تهران، ایران | ||
تاریخ دریافت: 24 فروردین 1402، تاریخ بازنگری: 23 خرداد 1402، تاریخ پذیرش: 14 مرداد 1402 | ||
چکیده | ||
طبقهبندی و شناسایی یکی از مهمترین روشهای استخراج اطلاعات از تصاویر میباشد که از میان آنها، شناسایی تصاویر چهره بهعنوان یکی از کارآمدترین ویژگیهای بیومتریک در جهت شناسایی انسانها همواره مورد توجه بوده است و درسالیان اخیر در این زمینه تحقیقات گستردهای انجام شده است. تاکنون راهحلهای مختلفی برای شناسایی چهره از سوی محققان مطرح شده است ولی در میان آنها استفاده از طبقهبندی نمایش تُنُک بهعنوان راهحلی مؤثر و خاص مورد توجه قرار گرفته است. یکی از محاسن نمایش تُنُک، دریافت تصاویر ورودی بدون نیاز به استفاده از روشهای استخراج ویژگی است، لذا در این مقاله روش پیشنهادی با بکارگیری نُرم صفر هموار شده وزندار و بر اساس نمایش تُنُک جهت شناسایی چهره معرفی میشود. برای بررسی عملکرد روش پیشنهادی از دو پایگاه داده ORL و AR شامل تصاویر حالات مختلف چهره استفاده شده است که نتایج شبیهسازی شده نشاندهنده عملکرد بسیار مناسب روش نسبت به سایر روشهای معروف در زمینه شناسایی چهره میباشد | ||
کلیدواژهها | ||
شناسایی چهره؛ استخراج ویژگی؛ طبقهبندی نمایش تُنُک؛ نرم صفر هموار شده وزندار | ||
عنوان مقاله [English] | ||
Applying weighted smoothed norm in sparse representation classification for face recognition | ||
نویسندگان [English] | ||
Mohammad Saeid Alamdari1؛ Masoud Fatemi2 | ||
1PhD student, Khwaja Nasiruddin Toosi University, Tehran, Iran | ||
2Associate Professor, Khwaja Nasiruddin Toosi University, Tehran, Iran | ||
چکیده [English] | ||
Classification and recognition is one of the most important methods of extracting information from images, and among them, facial image recognition as one of the most efficient biometric features for human identification has always been of interest, and extensive research has been conducted in this field in recent years. So far, various solutions for face recognition have been proposed by researchers, but among them, the use of Sparse representation classification has been considered as an effective and specific solution. One of the features of Sparse representation is to obtain features from input images without the need of feature extraction methods, therefore, in this article, the proposed method is aimed at applying weighted smoothed ℓ0 norm for face recognition using Sparse representation. To check the performance of the proposed method, ORL and AR databases including images of different facial expressions have been used, and the simulated results show that the method performs very well compared to other well-known methods in the field of face recognition. | ||
کلیدواژهها [English] | ||
Face recongnition, Feature extraction, Sparse representation classification, Weighted smoothed l0 norm | ||
مراجع | ||
[1] K. R. Kakkirala, S. R. Chalamala, and S. Jami, “Thermal Infrared Face Recognition: A review,” UKSim-AMSS 19th International Conference on Modelling & Simulation, pp. 55–60, 2017, DOI:10.1109/UKSim.2017.38 [2] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Yi Ma, “Robust face recognition via sparse representation,” IEEE Transaction on Pattern Analysis and Machine Intelligence, no. 2, pp. 210–227, February 2009, DOI: 10.1109/TPAMI.2008.79. [3] K. Awedat, A. Essa, and V. Asari, “Sparse Representation Classification Based Linear Integration of -norm and -norm for Robust Face Recognition,” presented at the Electro Information Technology (EIT), IEEE International Conference on, Lincoln, NE, USA, 2017, DOI:10.1109/EIT.2017.8053403. [4] T. Liu, J. X. Mi, Y. Liu, and C. Li, “Robust face recognition via sparse boosting representation,” Neurocomputing, vol. 214, pp. 944–957, 2016, DOI:10.1016/j.neucom.2016.06.071. [5] W. Jinming, and L. Haifeng, “Binary sparse signal recovery with binary matching pursuit,” Inverse Problems., vol. 37, no. 6, pp. 14–65, 2021, DOI: 10.1088/1361-6420/abf903. [6] R. Liu, M. Shu, and C. Chen, “ECG Signal Denoising and Reconstruction Based on Basis Pursuit,” Applied Sciences 11, no. 4, 2021, DOI:10.3390/app11041591. [7] A. Wan, “Uniform RIP Conditions for Recovery of Sparse Signals by Minimization,” in IEEE Transactions on Signal Processing, vol. 68, pp. 5379–5394, 2020, DOI:10.1109/TSP.2020.3022822. [8] H. Mohimani, M. Babaie-Zadeh, and C. Jutten, “A fast approach for overcomplete sparse decomposition based on smoothed norm,” IEEE Trans. Signal Process., vol. 57, no. 1, pp. 289–301, 2009, DOI: 10.1109/TSP.2008.2007606. [9] Babaie-Zadeh, M., B. Mehrdad, and G.B. Giannakis, “Weighted sparse signal decomposition. in Acoustics,” Speech and Signal Processing (ICASSP), IEEE International Conference on. 2012, DOI: 10.1109/ICASSP.2012.6288652. [10] D. L. Donoho, “For most large underdetermined systems of linear equation the minimal norm solution is also the sparsest solution,” Tech. Rep, 2004, DOI: 10.1002/cpa.20132. [11] M. Malek-Mohammadi, M. Jansson, A. Owrang, A. Koochakzadeh, and M. Babaie-Zadeh, “DOA estimation in partially correlated noise using low-rank/sparse matrix decomposition,” in IEEE Sensor Array and Multichannel Signal Processing Workshop, pp. 373–376, 2014, DOI: 10.1109/SAM.2014.6882419. [12] D. L. Donoho, and M. Elad, “Optimally sparse representation in general (nonorthogonal) dictionaries via minimization,” Proc of the National Acadmy of Sciences vol. 100, 2003, DOI: 10.1073/pnas.0437847100 [13] M. S. Alamdari, M. Fatemi and A. Ghaffari, “A Modified Sequential Quadratic Programming Method for Sparse Signal Recovery Problems,” Signal Processing, 2023, DOI: 10.1016/j.sigpro.2023.108955. [14] M. S. Alamdari, M. Fatemi, A. Ghaffari, “The Recovery of Sparse Signals by Sequential Quadratic Programming Approach,” Journal of Operational Research and Its Applications, pp. 19–32, 2023, DOI: 10.21018/jamlu.2023.1932.21. [15] M. Elad, “Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing,” Springer Science ans Business Media, 2010, DOI: 10.1007/978-1-4419.
[16] D. L. Donoho, M. Elad, and V. Temlyakov, “Stable recovery of sparse overcomplete representations in the presence of noise,” IEEE Trans. Info. Theory, vol. 52, no. 1, pp. 6–18, 2006, DOI: 10.1109/TIT.2005.860430.
[17] K. Huang, and S. Aviyente, “Sparse representation for signal classification,” in Advances in neural information processing systems. 2006. [18] M. S. Alamdari and M. Fatemi, “Presenting a new method to separate fetal heart signals from the mother by using sequential quadratic programming,” Journal of Advanced Mathematical Modeling, pp. 153–167, 2023, DOI: 10.22055/jamm.2023.43652.2157.
[19] M. Shahrezaee and M. S. Alamdari, “The Application of Numerical Analysis Techniques to Pattern Recognition of Helicopters by Area Method, Journal of Mathematical Research,” pp. 51–60, 2015, DOI: 10.29252/mmr.1.2.51. [20] M. S. Alamdari, “Providing an optimal mathematical model based on sparse display to improve image reconstruction,” Journal of New Researches in Mathematics, 2023, DOI: 10.30495/jnrm.2023.73817.2426. [21] F. Samaria, and A. Harter, “Parameterisation of a stochastic model for human face identification,” In Second IEEE workshop on applications of computer vision, Sarasota ,1994. [22] A. Martinez, and R. Benavente, “The AR face database. In: CVC technical report, no. 24, 1998. [23] H. Khosravi, A. Ghaffari, and J. Vahidi, “Face recognition via weighted non-negative sparse representation,” International Journal of Nonlinear Analysis and Applications, vol. 12, no. 2, pp. 1141–1150, 2021. [24] H. Motameni, “Face recognition using sparce reprasentations and p-laplacian,” Journal of Advances in Computer Research, vol. 10, no. 4, pp. 37–49, 2019.
| ||
آمار تعداد مشاهده مقاله: 275 تعداد دریافت فایل اصل مقاله: 260 |